Behavior Genetics

, Volume 25, Issue 3, pp 239–245 | Cite as

Activity pattern and rhythm in the subterranean mole rat superspeciesSpalax ehrenbergi

  • Rachel Ben-Shlomo
  • Uzi Ritte
  • Eviatar Nevo
Article

Abstract

Good candidates for naturally occurring variability in circadian rhythms may be subterranean herbivores, since they are not normally subjected to entraining light stimulation. To test this possibility, we selected the blind mole ratSpalax ehrenbergi superspecies in Israel and tested it in short- and long-term experiments. Short-term experiments showed that the animals exhibited three patterns of activity: a regular circadian rhythm (26.6%), an altered circadian rhythm (shorter or longer than normal, 53.1%), and an arrhythmic pattern (20.3%). A long-term experiment showed that the arrhythmic pattern indeed reflected a genuine arrhythmic genotype. The mole rats were found to be active less than 25% of the day and exhibited a multiphasic mode of activity, both diurnally and nocturnally. The number of activity periods and the level of activity were negatively correlated: Animals that exhibited a high level of activity per unit of time showed low numbers of activity periods, while animals that exhibited a lower level of activity showed higher numbers.

Key Words

Subterranean mole rats Spalax ehrenbergi activity pattern circadian rhythm polymoprhism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buttner, D., and Wollnik, F. (1984). Strain-differentiated circadian and ultradian rhythms in locomotor activity of the laboratory rat.Behav. Genet. 14:137–152.Google Scholar
  2. Contreras, L. C., and McNab, B. K. (1990). Thermoregulation and energetics in subterranean mammals.In Nevo, E., and Reig, O. (eds.),Evolution of Subterranean Mammals at the Organismal and Molecular Levels, Alan R. Liss, New York, pp. 231–250.Google Scholar
  3. Cooper, H. M., Herbin, M., and Nevo, E. (1993a). Ocular regression conceals adaptive progression of the visual system in a blind subterranean mammal.Nature 361:156–159.Google Scholar
  4. Cooper, H. M., Herbin, M., and Nevo, E. (1993b). Visual system of a naturally microphthalmic mammal: The blind mole rat.Spalax ehrenbergi. J. Comp. Neurol. 328:313–350.Google Scholar
  5. de Jong, W. W., Hendriks, W., Sanyal, S., and Nevo, E. (1990). The eye of the blind mole rat (Spalax ehrenbergi). Regressive evolution at the molecular level.In Nevo, E., and Reig, O. (eds.),Evolution of Subterranean Mammals at the Organismal and Molecular Levels, Alan R. Liss, New York, pp. 383–395.Google Scholar
  6. Edmunds, L. N. (1988).Cellular and Molecular Bases of Biological Clocks, Springer-Verlag, New York.Google Scholar
  7. Gebezynski, M. (1964). Effect of light and temperature on the 24-hour rhythm inPitymys subterraneus (de Sel.-Long.).Acta Theriol. 9:125–137.Google Scholar
  8. Gettinger, R. D. (1984). A field study of activity pattern ofThomomys bottae.J. Mamm. 65:76–84.Google Scholar
  9. Gorman, M. L., and Stone, R. D. (1990). Mutual avoidance by European molesTalpa Europea.In MacDonald, D. W., Muller-Schwarze, D., and Natynczuk, S. E. (eds.),Chemical Signals in Vertebrate 5, Oxford University Press, Oxford, pp. 367–377.Google Scholar
  10. Haim, A., Heth, G., Pratt, H., and Nevo, E. (1983). Photoperiodic effects on thermoregulation in a ‘blind’ subterranean mammal.J. Exp. Biol. 107:59–64.Google Scholar
  11. Harvey, M. J. (1976). Home range, movements and diel activity of the Eastern mole,Scalopus aquaticus.Am. Midl. Nat. 95:436–445.Google Scholar
  12. Hickman, G. C. (1980). Locomotory activity of captiveCryptomys hottentotus (Mammalia: Bathyergidae), a fossorial rodent.J. Zool. Lond. 192:225–235.Google Scholar
  13. Jarvis, J. U. M. (1973). Activity patterns in the mole-ratsTachyoryctes spledens andHeliophobius argenteocinereus.Zool. Afr. 8:101–119.Google Scholar
  14. Kotler, B. P., Blaustein, L., and Brown, J. S. (1992). Predator facilitation: The combined effect of snakes and owls on the foraging behavior of gerbils.Ann. Zool. Fennici 29: 199–206.Google Scholar
  15. McNab, B. K. (1966). The metabolism of fossorial rodents: A study of convergence.Ecology 47:712–733.Google Scholar
  16. Mrosovsky, N. (1989). Mutant hamster in a hurry.Nature 337: 213–214.Google Scholar
  17. Nevo, E. (1979). Adaptive convergence and divergence of subterranean mammals.Annu. Rev. Ecol. Syst. 10:269–308.Google Scholar
  18. Nevo, E. (1991). Evolutionary theory and processes of active speciation and adaptive radiation in subterranean mole rats,Spalax ehrenbergi superspecies, in Israel.Evol. Biol. 25:1–125.Google Scholar
  19. Nevo, E., Guttman, R., Haber, M., and Erez, E. (1982). Activity patterns of evolving mole rats.J. Mammal. 63:453–463.Google Scholar
  20. Pevet, P., Heth, G., Haim, A., and Nevo, E. (1984). Photoperiod perception in the blind mole rat (Spalax ehrenbergi, Nehring): Involvement of the Harderian gland, atrophied eyes and melatonin.J. Exp. Zool. 232:41–50.Google Scholar
  21. Possidente, B., and Stephan, K. F. (1988). Circadian period in mice: Analysis of genetic and maternal contributions to inbred strain differences.Behav. Genet. 18:109–117.Google Scholar
  22. Rado, R., Gev, H., Goldman, B. D., and Terkel, J. (1991). Light and circadian activity in the blind mole rat.In Riklis, E. (ed.),Photobiology, Plenum Press, New York, pp. 581–589.Google Scholar
  23. Ralph, M. R., and Menaker, M. (1988). A mutation of circadian system in golden hamsters.Science 241:1225–1227.Google Scholar
  24. Sanyal, S., Jansen, H. G., De Grip, W. G., Nevo, E., and De Grip, W. W. (1990). The eye of the blind mole ratSpalax ehrenbergi: Rudiment with hidden function.Invest. Ophthamol. Vis. Sci. 31:1398–1401.Google Scholar
  25. Schwartz, J. W., and Zimmerman, P. (1990). Circadian timekeeping in BALB/c and C5BL/6 inbred mouse strains.J. Neurosci. 10:3685–3694.Google Scholar
  26. Vitaterna, M. H., King, D. P., Chang, A.-M., Kornhauser, J. M., Lowrey, P. L., McDonald, J. D., Dove, W. F., Pinto, L. H., Turek, F. W., and Takahashi, J. S. (1994). Mutagenesis and mapping of a mouse gene,Clock, essential for circadian behavior.Science 264:719–725.Google Scholar
  27. Vleck, D. (1981). Burrow structure and foraging cost in the fossorial rodentThomomys botae.Oecologia 49:391–396.Google Scholar
  28. Woods, J. A., and Mead-Briggs, A. R. (1978). The daily cycle of activity in the mole (Talpa europea) and its seasonal changes, as revealed by radioactive monitoring of the nest.J. Zool. Lond. 184:563–572.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Rachel Ben-Shlomo
    • 1
    • 2
  • Uzi Ritte
    • 2
  • Eviatar Nevo
    • 1
  1. 1.Institute of EvolutionUniversity of HaifaHaifaIsrael
  2. 2.Department of GeneticsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations