International Journal of Primatology

, Volume 11, Issue 6, pp 541–552 | Cite as

The banded karyotype ofCercopithecus mitis maesi compared with the karyotypes ofC. albogularis samango andC. nictitans stampflii

  • Luca Sineo
Article

Abstract

The karyotypes ofCercopithecus alcogularis andC. mitis, both with 72 chromosomes, are similar but differ in a numer of rearrangements.C. nicitans (2n=70) andC. mitis karyotypes, even though differing in diploid number, appear to be closely related to each other because of several banding features and especially because they may be linked by a derived complex inversion polymorphism. The results show that chromosomal inversion variants can survive speciation. These results do not support recent chromosomal phylogenetic interpretations which were based on the finding of a diploid number of 2n=70 forC. mitis. The results described here emphasize the use of chromosomal characters in the study of the phylogeny and taxonomy ofCercopithecus.

Key Words

Cercopithecus chromosomal polymorphism cytotaxonomy karyotype 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldrich-Blake, F. P. G. (1968). A fertile hybrid between twoCercopithecus spp. in the Budongo Forest. Uganda.Folia Primatol. 9: 15–21Google Scholar
  2. Allen, G. M. (1939). A checklist of the African mammals.Bull. Mus. Comp. Zool. Harv. 83: 1–763.Google Scholar
  3. Ayala, F. J., Tracey, M. L., Hedgecock, D., and Richmond, R. C. (1974). Genetic differentiation during the speciation process inDrosophila.Evolution 28: 576–592.Google Scholar
  4. Bender, M. A., and Chu, E. H. Y. (1963). Chromosomes of Primates. In Buettner-Janush (ed.),Evolutionary and Genetic Biology Of Primates, Vol. I. Academic Press, New York.Google Scholar
  5. Bickman, J. W., and Baker, R. (1979). Canalization model of chromosomal evolution.Bull. Carnegie Mus. Nat. Hist. 13: 70–84.Google Scholar
  6. Booth, C. P. (1968). Taxonomic studies ofCercopithecus mitis Wolf (East Africa).Res. Rep. Natl. Geogr. Soc. 37–61.Google Scholar
  7. Chiarelli, B. (1963). Primi risultati di ricerche di genetica e cariologia comparata in Primati e loro interesse evolutivo.Riv. Antropol. 50: 87–124.Google Scholar
  8. Chiarelli, B., and Vaccarino, C. (1964). Cariologia ed evoluzione del genereCercopithecus.Atti Ass. Genet. Ital. 9: 329–339.Google Scholar
  9. Chiarelli, B. (1968). Caryological and hybridological data for the taxonomy and phylogeny of the Old World Primates. In Chiarelli, B. (ed.),Taxonomy and Phylogeny of Old World Primates with References to the Origin of Man, Rosenberg and Sellier, Torino, pp. 151–186.Google Scholar
  10. Chu, E. H. Y., and Giles, N. H. (1975). A study of primate chromosomes complements.Am. Nat. 91: 273–282.Google Scholar
  11. Dandelot, P. (1968).Preliminary Identification Manual for African Mammals, Primates: Anthropoidea, Smithsonian Institution Press, Washington, D.C.Google Scholar
  12. Dutrillaux, B. (1979). Tentative phylogeny fromMicrocebus murinus (Prosimians) to Man.Hum. Genet. 251–314.Google Scholar
  13. Dutrillaux, B., Couturier, J., and Chauvier, G. (1980). Chromosomal evolution of 19 species or subspecies ofCercopithecus.Ann. Genet. 23(3): 133–143.Google Scholar
  14. Dutrillaux, B., Couturier, J., Muleris, M., Lombard, M., and Chauvier, G. (1982). Chromosomal phylogeny of forty-two species or subspecies of Cercopithecoids (Primates, Catarrhini).Ann. Genet. 25(2): 96–109.Google Scholar
  15. Gartland, J. S., and Brain, K. (1968). Ecology and social variability inCercopithecus aethiops andC. mitis. In Jay, P. C. (ed.),Primates. Studies in Adaptation and Variability, Holt, Rinehart and Wilson, New York, pp. 244–253.Google Scholar
  16. Gautier, J. P. (1988). Interspecific affinities among guenons as deduced from vocalizations. In Gautier-Hion, Bourliere, Gautier, and Kingdon (eds.),A Primate Radiation: Evolutionary Biology of the African Guenons, Cambridge University Press, Cambridge, pp. 194–226.Google Scholar
  17. Geoffroy, St. Hilaire, I. (1842). Sur les singes de l'ancien monde, specialement sur les genres Colobe, Miopitheque et Cercopitheque.C. R. Hebd. Seanc. Acad. Sci. Paris 15: 1037–1038.Google Scholar
  18. Grupp, P. (1982). Refuges and dispersal in the speciation of African forest Mammals. In Pracen (ed.),Biological Diversification in the Tropics, Columbia University Press, New York, pp. 537–553.Google Scholar
  19. Hill, W. C. O. (1966).Primates: Comparative Anatomy and Taxonomy, Vol. 6, Edinburgh University Press, Edinburgh.Google Scholar
  20. Ikeuki, T. (1984). Inhibitory effects of Ethidium bromide on mitotic chromosome condensation and its implication to high-resolution chromosome banding.Cytogenet. Cell Genet. 38: 56–61.Google Scholar
  21. Kingdon, J. (1971).East Africa Mammals. An Atlas of Evolution in Africa, Academic Press, London.Google Scholar
  22. Kuhn, H. J. (1967). Zur systematic der Cercopithecidae. In Stark, Schneider, and Kuhn (eds.),Progress in Primatology, Gustav Fisher Verlag, Stuttgart.Google Scholar
  23. Lonnerg, E. (1929). The development and distribution of the Africa fauna in connection with and depending upon climatic changes.Ark. Zool. 21(4): 1–33.Google Scholar
  24. Marks, J. (1985). C-Band variability in the common chimpanzee,Pan troglodytes.J. Hum. Evol. 14(7): 669–675.Google Scholar
  25. Muleris, M., Gautier, J. P., Lombard, M., and Dutrillaux, B. (1985). Etude cytogenetique deCercopithecus wolfi, Cercopithecus erythrotis, et d'un hybrideCercopithecus ascanius×Cercopithecus pogonias grayi.Ann. Genet 28(2): 75–80.Google Scholar
  26. Napier, P. H. (1981). Catalogue of primates in the British Museum (Natural History) and elsewhere in the British Isles. Part II. Family Cercopithecidae, subfamily Cercopithecinae. Br. Mus. (Nat. Hist.), London.Google Scholar
  27. Napier, J. R., and Napier, P. H. (1985). The natural history of the Primates. Br. Mus. (Nat. Hist.), London.Google Scholar
  28. Oates, J. F. (1988). The distribution of Cercopithecus monkeys in West African forests. In Gautier-Hion, Bourliere, Gautier, and Kingdon (eds.),A Primate Radiation: Evolutionary Biology of the African Guenons; pp. 79–103.Google Scholar
  29. Pickford, M. (1987). The chromnology of the Cerecopithecoidea of East Africa.Hum. Evol. 2(1): 1–17.Google Scholar
  30. Pocock, R. I. (1907). A monographic revision of the monkeys of the genusCercopithecus.Proc. Zool. Soc. Lond. 1: 677–746.Google Scholar
  31. Ponsà, M., and Egozcue, J. (1981). Cytogenetics studies in the speciesCercopithecus pogonias (Bennet, 1833) andCercopithecus nictitans (Linnaeus, 1766).Int. J. Primatol. 2: 263–271.Google Scholar
  32. Rahm, H. U. (1970). Ecology, zoogeography and systematics of some African forest monkey. In Napier and Napier (eds.),Old World Monkeys, Academic Press, London, pp. 589–626.Google Scholar
  33. Ruvolo, M. (1988). Genetic evolution in the African guenons. In Gautier-Hion, Bouliere, Gautier, and Kingdon (eds.),A Primate Radiation: Evolutionary Biology of the African Guenons, Cambridge University Press, Cambridge, pp. 127–139.Google Scholar
  34. Schouteden, H. (1944). De Zoogdieren van belgisch Congo en van Ruanda-Urundi.Ann. Mus. R. Congo Belge (2)3: 1–168.Google Scholar
  35. Schwarz, E. (1928). Notes on the classification of the African monkeys in the genusCercopithecus, Erxleben.Ann. Mag. Nat. Hist. 1(10): 649–663.Google Scholar
  36. Sineo, L. (1986).Cariologia ed evolutione del Genere Cercopithecus, Thesis-Doctorate in Anthropological Sciences, University of Florence, Biblioteche nazionali, Roma-Firenze.Google Scholar
  37. Sineo, L., Stanyon, R., and Chiarelli, B. (1986a). Chromosomes of theCercopithecus aethiops species group:C. aethiops (Linnaeus, 1758),C. cynosurus (Scopoli, 1786), C. pygerythrus (Cuvier, 1821) andC. sabaeus (Linnaeus, 1766).Int. J. Primatol. 7: 569–582.Google Scholar
  38. Sineo, L., Scheffrahn, W., Glaser, D., and Maurer, A. (1986b). The banded chromosomes of theC. nictitans stampflii (Jentink, 1888).Int. J. Anthropol. 1:(4): 369–374.Google Scholar
  39. Small, M. F., Stanyon, R., Smith, D. G., and Sineo, L. (1985). High resolution chromosomes of the Rhesus Macaques (Macaca mulatta).Am. J. Primatol. 9: 63–67.Google Scholar
  40. Stanyon, R., Fantini, C., Camperio-Ciani, A., Chiarelli, B., and Ardito, G. (1988). Banded karyotypes of 20 species of Papionini (Burnett, 1828) reveal no necessary correlation with speciation.Am. J. Primatol. 16: 3–17.Google Scholar
  41. Sumner, A. T. (1972). A simple technique for demonstrating centromeric heterochromatin.Exp. Cell Res. 75: 304–306.Google Scholar
  42. Sykes, W. H. (1832). Remarks onCercopithecus albogularis. Proc. Zool. Soc. Lond. 18.Google Scholar
  43. Tappen, N. C. (1960). Problems of distribution and adaptation of the African Monkeys.Curr. Anthropol. 1: 19–120.Google Scholar
  44. Thorington, R. M., and Groves, C. P. (1970). An annotated classification of the Cercopithecoidea. In Napier and Napier (eds.),Old World Monkeys, Academic Press, London, pp. 629–647.Google Scholar
  45. Turner, T. R., Mott, C. S., and Maiers, J. E. (1986). Genetic and morphological studies on two species of Kenyan monkeys,Cercopithecus aethiops andC. mitis. In Else and Lee (eds.),Primate Evolution, Cambridge University Press, Cambridge, Mass., pp. 307–316.Google Scholar
  46. White, M. J. D. (1945).Animal Cytology and Evolution, Cambridge University Press, London.Google Scholar
  47. Wolfheim, J. M. (1983).Primates of the World, University of Washington Press, Seattle.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Luca Sineo
    • 1
  1. 1.Institute of AnthropologyUniversity of FlorenceFlorenceItaly

Personalised recommendations