Behavior Genetics

, Volume 25, Issue 2, pp 187–196 | Cite as

The psychopharmacological basis of nicotine's differential effects on behavior: Individual subject variability in the rat

  • John A. Rosecrans
Article

Abstract

Nicotine, the presumed active pharmacological agent in tobacco, produces variable effects on behavior that are at best described as “paradoxical” in nature. Thus, nicotine, via tobacco use in humans or nicotine administration in experimental animals, tends to transpose behavior depending on predrug baseline rates of behavior. High rates of behavior appear to be reduced, while low rates of behavior appear to be increased by nicotine. This work further proposes that nicotine's variable effects on behavior may be related to its capacity to act as a behavioral agonist and/or antagonist via its ability either to activate or to desensitize distinct central nicotinic acetylcholinergic receptors (nAChR's). Nicotine is portrayed as a neuronal modulating agent that can affect behavior contingent upon the genetic makeup of the individual subject being studied. Depending on the structure, function, and location of distinct nAChR's, nicotine appears to be able to induce a wide range of behavioral effects important to the tobacco user. However, this does not rule out the role the importance that other biogenic amine systems (i.e., serotonin or dopamine) may have in the genetics of tobacco use or nicotine's variable effects on behavior.

Key Words

Nicotine smoking nicotinic receptors behavior desensitization serotonin individual variability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian, G. K., Rosecrans, J. A., and Sheard, M. H. (1967). Serotonin release in the forebrain by stimulation of the midbrain raphe.Science 15:402–404.Google Scholar
  2. Balfour, D. J. K. (1989). Influence of nicotine on the release of monoamines in the brain.Prog. Brain Res. 79:165–172.Google Scholar
  3. Benowitz, N. L., Porche, H., and Jacob, P., III (1990). Pharmacokinetics, metabolism, and pharmacodynamics of nicotine, InNicotine Psychopharmacology: Molecular, Cellular, and Behavioral Aspects, Wonnacott, S., Russell, M. A. H., and Stolerman, I. P. (eds.), Oxford Science, Oxford, New York, Tokyo, pp. 112–157.Google Scholar
  4. Cloninger, C. R. (1987). Neurogenic adaptive mechanisms in alcoholism.Science 44:410–4176.Google Scholar
  5. Collins, A. C. (1991). Genetic influences on tobacco use: A review of human and animal studies.Int. J. Addict. 25: 35–55.Google Scholar
  6. Domino, E. F. (1967). Electroencephalographic and behavioral arousal effect of small doses of nicotine.Ann. N.Y. Acad. Med. 142:216–244.Google Scholar
  7. Heath, A. C., Madden, P. A. F., Slutske, W. S., and Martin, N. G. (1995). Personality and the inheritance of smoking behavior: A genetic perspective.Behav. Genet. 25:103–117.Google Scholar
  8. Hendry, J. S., and Rosecrans, J. A. (1982). Effects of nicotine on conditioned and unconditioned behaviors in experimental animals.Pharmac. Ther. 17:431–454.Google Scholar
  9. Iwamoto, E. T. (1989). Antinociception after nicotine administration in the mesopontine tegmentum of rats: Evidence for muscarinic actions.J. Pharmacol. Exp. Ther. 251: 412–427.Google Scholar
  10. James, J. R., Villanueva, H. F., Johnson, J. H., Arezo, S., and Rosecrans, J. A. (1994). Evidence that nicotine can acutely desensitize central nicotinic acetylcholinergic receptors.Psychopharmacology 114:456–462.Google Scholar
  11. Klein, R. (1993).Cigarettes Are Sublime, Duke University Press, Durham, NC, and London.Google Scholar
  12. Marks, M. J., Burch, J. B., and Collins, A. C. (1985). Effects of chronic nicotine infusion on tolerance development and nicotinic receptors.J. Pharmacol. Exp. Ther. 226:817–827.Google Scholar
  13. Nordberg, A., Wahlstrom, G., Arnelo, U., and Larsson, C. (1985). Effect of long-term nicotine treatment on [3H]nicotine binding sites in the rat brain.Drug Alcohol Depend. 16:9–17.Google Scholar
  14. Ochoa, E. L. M., Chattopadhyay, A., and McNamee, M. G. (1989). Desensitization of the nicotinic acetylcholine receptor: Molecular mechanisms and effect of modulators.Cell Mol. Neurobiol. 9:141–177.Google Scholar
  15. Overstreet, D. H. (1995). Differential effects of nicotine in inbred and selectively bred rodents.Behav. Genet. 25:179–185.Google Scholar
  16. Pomerleau, O. F. (1995). Individual differences in sensitivity to nicotine: Implications for genetic research on nicotine dependence.Behav. Genet. 25:161–177.Google Scholar
  17. Pomerleau, C. S., Pomerleau, O. F., Flessland, K. A., and Batton, S. M. (1992). Relationship of tridimensional personality questionnaire scores and smoking variables in female and male smokers.J. Subs. Abuse 4:143–154.Google Scholar
  18. Robinson, J. H., and Pritchard, W. S. (1992). The role of nicotine in tobacco use.Psychopharmacology 108:397–407.Google Scholar
  19. Rosecrans, J. A. (1970a). Forebrain biogenic amine function in high and low active female rats.Physiol. Behav. 5:453–458.Google Scholar
  20. Rosecrans, J. A. (1970b). Differences in brain area 5-hydroxytryptamine turnover and rearing in rats and mice of both sexes.Eur. J. Pharmacol. 9:379–382.Google Scholar
  21. Rosecrans, J. A. (1971a). Effects of nicotine on behavioral arousal and brain 5-hydroxytryptamine function in female rats selected for differences in activity.Eur. J. Pharmacol. 14:29–37.Google Scholar
  22. Rosecrans, J. A. (1971b). Effects of nicotine on brain area 5-hydroxytryptamine function in male and female rats separated for differences in activity.Eur. J. Pharmacol. 16: 123–127.Google Scholar
  23. Rosecrans, J. A. (1972). Brain area nicotine levels in male and female rats with different levels of spontaneous activity.Neuropharmacology 11:863–870.Google Scholar
  24. Rosecrans, J. A. (1989). Nicotine as a discriminative stimulus: A neurobiobehavioral approach to studying central cholinergic mechanisms.J. Subs. Abuse Treat. 1:287–300.Google Scholar
  25. Rosecrans, J. A., and Adams, M. D. (1976). Brain 5-hydroxytryptamine correlates of behavior: Studies involving spontaneously hypertensive SHR and normotensive wistar rats.Pharmacol. Biochem. Behav. 5:559–564.Google Scholar
  26. Rosecrans, J. A., and Chance, W. T. (1977). Cholinergic and noncholinergic properties of the discriminative stimulus properties of nicotine. In Lal, H. (ed.),Adv. Behav. Biol., Plenum Press, New York, Vol. 22, pp. 155–186.Google Scholar
  27. Rosecrans, J. A., and James, J. R. (1993). The evaluation of central cholinergic neurons using anin vivo drug discrimination paradigm in rats. In Rosecrans, J., Levin, and Karan, L. (eds.),J. Med. Chem. Res. 2:530–545.Google Scholar
  28. Rosecrans, J. A., and Karan, L. D. (1992). Neurobehavioral mechanisms of nicotine action: Role in the initiation and maintenance of tobacco dependence.J. Subst. Abuse Treat. 10:161–170.Google Scholar
  29. Rosecrans, J. A., and Sheard, M. H. (1969). Effects of an acute stress on forebrain 5-hydroxytryptamine (5-HT) metabolism in CNS lesioned and drug pretreated rats.Eur. J. Pharmacol. 6:197–199.Google Scholar
  30. Rosecrans, J. A., and Schechter, M. A. (1972a). Brain 5-hydroxytryptamine correlates of behavior in rats: Strain and sex variability.Physiol. Behav. 8:503–510.Google Scholar
  31. Rosecrans, J. A., and Schechter, M. D. (1972b). Brain area nicotine levels in male and female rats of two strains.Arch. Int. Pharmacodyn. 196:45–55.Google Scholar
  32. Rosecrans, J. A., and Villanueva, H. F. (1991). Discriminative stimulus properties of nicotine: Mechanisms of transduction.NIDA Res. Monogr. 116:101–119.Google Scholar
  33. Rosecrans, J. A., Lovell, R. A., and Freedman, D. X. (1967). Effects of lysergic acid diethylamide on the metabolism of brain 5-hydroxytryptamine.Biochem. Pharmacol. 16: 2011–2021.Google Scholar
  34. Rosecrans, J. A., Hong, J. A., and Tilson, A. A. (1982). Effects of conditioned analgesia (Autoanalgesia) on pituitary-adrenal function and brain neuropeptides in rats selected for differences in activity. In Trabucchi, E., and Costa, E. (eds.), Raven Press, New York, pp. 151–156.Google Scholar
  35. Rosecrans, J. A., Robinson, S. E., Johnson, J. H., Mokler, D. J., and Hong, J. S. (1986). Neuroendocrine, biogenic amine and behavioral responsiveness to a repeated foot-shock-induced analgesia (FSIA) stressor in Sprague-Dawley (CD) and Fischer-344 rats (CDF).Brain Res. 382:71–80.Google Scholar
  36. Russell, M. A. H. (1989). Subjective and behavioral effects of nicotine in humans: some sources of individual variation.Prog. Brain Res. 79:289–302.Google Scholar
  37. Schwartz, R. D., and Kellar, K. J. (1985). Nicotinic cholinergic binding sites in brain: RegulationIn Vivo.Science 229: 387–391.Google Scholar
  38. Schwartz, R. D., Lehman, J., and Kellar, K. J. (1984). Presynaptic nicotinic cholinergic receptors labelled by [3H]acetylcholine on catecholamine and serotonin axons in brain.J. Neurochem. 42:1495–1498.Google Scholar
  39. Wilbert, J. (1987).Tobacco and Shamanism in South America, Yale University Press, New Haven, CT, and London.Google Scholar
  40. Wonnacott, S. (1987). Brain nicotine binding sites.Hum. Toxicol. 6:343–353.Google Scholar
  41. Wonnacott, S. (1990). The paradox of nicotinic acetylcholine receptor upregulation.Trends Pharmacol. Sci. 11:216–219.Google Scholar
  42. Wonnacott, S., Irons, J., Rapier, C., Thorne, B., and Lunt, G. G. (1989). Presynaptic modulation of transmitter release by nicotinic receptors.Prog. Brain Res. 79:157–164.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • John A. Rosecrans
    • 1
  1. 1.Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmond

Personalised recommendations