Advertisement

Siberian Mathematical Journal

, Volume 7, Issue 2, pp 229–236 | Cite as

Some extremal problems for linear operators in a class of integral functions of finite degree

  • I. I. Ibragimov
  • F. G. Nasibov
Article
  • 12 Downloads

Keywords

Linear Operator Integral Function Extremal Problem Finite Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    I. I. Ibragimov, Extremal properties of integral functions of finite degree. Izd. AN Azer. SSR, Baku (1962).Google Scholar
  2. 2.
    I. I. Ibragimov, Extremal problems in a class of integral functions of finite degree. Izv. AN SSSR, Ser. matem.,23, 2, 243–256 (1959).Google Scholar
  3. 3.
    S. M. Nikol'ske. Inecualities for integral functions of finite degree and their application to the theory of differentable functions of many variables. Tr. Matem. Inst. im. V. A. Steklov, AN SSSR,38, 244–278 (1951).Google Scholar
  4. 4.
    N. I. Akhiezer, Lectures on Approximation Theory [in Russian], Gostekhizdat, Moscow (1947).Google Scholar
  5. 5.
    K. I. Babenko, On a certain inequality in the theory of Fourier integrals, Izv. AN SSSR, Ser. matem.,25, 4, 531–542 (1901).Google Scholar
  6. 6.
    N. I. Akhiezer and M. G. Krein, On certain questions in the theory of moments, Gos. nauchn. tekhn. Izd. UkrSSR, Kuar'kov (1938).Google Scholar
  7. 7.
    E. Tichmarsh, Introduction to the Theory of Fourier Integrals [in Russian], Gostekhizdat, Moscow (1948).Google Scholar

Copyright information

© Consultants Bureau 1967

Authors and Affiliations

  • I. I. Ibragimov
  • F. G. Nasibov

There are no affiliations available

Personalised recommendations