International Journal of Primatology

, Volume 14, Issue 1, pp 177–192 | Cite as

Dental scaling in the callitrichinae

  • J. Michael Plavcan
  • Anne M. Gomez


Callitrichines share several morphological features that appear to be derived among anthropoid primates. One view maintains that some of them are the consequence of a rapid reduction in body size in the common ancestor of callitrichines. This hypothesis predicts that callitrichines should have relatively large teeth for their body size in comparison to other platyrrhines. Dental metric data from 18 platyrrhine species, including 4 callitrichines, is used to test this hypothesis. Callitrichine tooth size is compared both to empirical regressions of tooth size against body weight for noncallitrichine platyrrhines and to a prediction of geometric similarity. In neither comparison do callitrichines as a group show significantly greater tooth size than other platyrrhines. In fact, three of the four genera seem to have relatively small teeth for their body size. While this study fails to support the hypothesis that the common ancestor of callitrichines underwent a rapid reduction in body size, it neither proves nor disproves the hypothesis that they are smaller than their last common ancestor.

Key Words

primates Callitrichinae phyletic dwarfing postcanine tooth size allometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauchot, R., and Stephan, H. (1969). Encephalisation et niveau evolutif chez les simiens.Mammalia 33:225–275.Google Scholar
  2. Cartmill, M. (1974). Pads and claws in arboreal locomotion. In Jenkins, F. A. (ed.),Primate Locomotion, Academic Press, New York, pp. 45–83.Google Scholar
  3. Corruccini, R. S. (1987a). The dentinoenamel junction in primates.Int. J. Primatol. 8:99–114.Google Scholar
  4. Corruccini, R. S. (1987b). “Relative growth” from the dentinoenamel junction in primate maxillary molars.Hum. Evol. 2:263–269.Google Scholar
  5. Corruccini, R. S. (1987c). Shape in morphometrics: Comparative analysis.Am. J. Phys. Anthropol. 73:289–303.Google Scholar
  6. Corruccini, R. S., and Henderson, A. M. (1978). Multivariate dental allometry in primates.Am. J. Phys. Anthropol. 48:203–208.Google Scholar
  7. Eisenberg, J. F. (1978). The evolution of arboreal herbivores in the class Mammalia. In Montgomery, G. G. (ed.),The Ecology of Arboreal Folivores, Smithsonian Institution Press, Washington, D.C., pp. 135–152.Google Scholar
  8. Fontaine, R. (1981). The uakaris, genusCacajao. In Coimbra-Filho, A. F., and Mittermeier, R. A. (eds.)Ecology and Behavior of Neotropical Primates, Vol. 1, Acad. Brasileira de Ciencias, Rio de Janeiro, pp. 443–494.Google Scholar
  9. Ford, S. M. (1980). Callitrichids as phyletic dwarfs, and the place of the Callitrichidae in Platyrrhini.Primates, 21:31–43.Google Scholar
  10. Gingerich, P. D., Smith, B. H., and Rosenburg, K. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils.Am. J. Phys. Anthropol. 58:81–100.Google Scholar
  11. Gould, S. J. (1975). On the scaling of tooth size in mammals.Am. Zool. 15(2):51–362.Google Scholar
  12. Hershkovitz, P. (1977).Living New World Monkeys (Platyrrhini), Vol. 1, University of Chicago Press, Chicago.Google Scholar
  13. Jungers, W. L. (1979). Locomotion, limb proportions and skeletal allometry in lemurs and lorises.Folia Primatol. 32:8–28.Google Scholar
  14. Kay, R. F. (1973).Mastication, Molar Tooth Structure and Diet in Primates, Ph.D. thesis, Yale University, New Haven, Conn.Google Scholar
  15. Kay, R. F. (1975). The functional adaptations of primate molar teeth.Am. J. Phys. Anthropol. 43:195–216.Google Scholar
  16. Kay, R. F. (1978). Molar structure and diet in extant Cercopithecidae. In Butler, P. M., and Joysey, K. A. (eds.),Development, Function and Evolution of Teeth, Academic Press, New York, pp. 309–339.Google Scholar
  17. Kay, R. F. (1988). Phyletic position of the Pitheciinae.J. Vert. Paleo. 8:19A.Google Scholar
  18. Kay, R. F. (1990a). A possible “giant” tamarin from the Miocene of Colombia.Am. J. Phys. Anthropol. 81:248.Google Scholar
  19. Kay, R. F. (1990b). The phyletic relationships of extant and fossil Pitheciinae (Platyrrhini, Anthropoidea).J. Hum. Evol. 19:175–208.Google Scholar
  20. Kay, R. F., Plavcan, J. M., Glander, K. E., and Wright, P. C. (1988). Sexual selection and canine dimorphism in New World monkeys.Am. J. Phys. Anthropol. 77:385–397.Google Scholar
  21. Kinzey, W. G., Rosenberger, A. L., and Ramirez, M. (1975). Vertical clinging and leaping in a neotropical anthropoid.Nature 225:327–328.Google Scholar
  22. Leutenegger, W. (1973). Maternal-fetal weight relationships in primates.Folia Primatol. 20:280–293.Google Scholar
  23. Leutenegger, W. (1980). Monogamy in callitrichids: A consequence of phyletic dwarfism.Int. J. Primatol. 1:95–98.Google Scholar
  24. Leutenegger, W., and Cheverud, J. (1982). Correlates of sexual dimorphism in primates: Ecological and size variables.Int. J. Primatol. 3:387–402.Google Scholar
  25. Levitch, L. C. (1987). Ontogenetic allometry of small-bodied platyrrhines.Am. J. Phys. Anthropol. 69:230.Google Scholar
  26. Levitch, L. C. (1987).Ontogenetic Allometry of the Postcranial Skeleton in Platyrrhines, with Special Emphasis on Its Relationship to the Evolution of Small Body Size in the Callitrichidae, Ph.D. thesis, University of Washington.Google Scholar
  27. Luchterhand, K., Kay, R. F., and Madden, R. H. (1986).Mohanomico hershkovitzi, gen. et sp. nov., un primate du Miocene moyen d'Amerique du Sud.C. R. Acad. Sci. Paris 19:1753–1758.Google Scholar
  28. Marshall, L. G., and corruccini, R. S. (1978). Variability, evolutionary rates, and allometry in dwarfing lineages.Paleobiology 4:101–119.Google Scholar
  29. Peters, S. M. F. (1978). Third molar loss in ceboids and the position of the Callitrichidae.Am. J. Phys. Anthropol. 48:426.Google Scholar
  30. Pirie, P. L. (1978). Allometric scaling in the postcanine dentition with reference to primate diets.Primates 19:583–591.Google Scholar
  31. Plavcan, J. M. (1990).Sexual Dimorphism in the Dentition of Extant Anthropoid Primates, Ph.D. thesis, Duke University, Durham, N.C.Google Scholar
  32. Plavcan, J. M., and van Schaik, C. P. (1992). Intrasexual competition and canine dimorphism in anthropoid primates.Am. J. Phys. Anthropol. 87:461–477.Google Scholar
  33. Prothero. D. R., and Sereno, P. C. (1982). Allometry and paleoecology of medial Miocene dwarf rhinoceroses from the Texas Gulf coastal plain. PitPaleobiology 8:16–30.Google Scholar
  34. Rayner, J. M. V. (1985). Linear relations in biomechanics: The statistics of scaling functions.J. Zool. Lond. (A) 206:415–439.Google Scholar
  35. Ricker, W. E. (1973). Linear regressions in fishery research.J. Fish. Res. Board Can. 30:409–434.Google Scholar
  36. Rosenberger, A. L. (1977).Xenothrix and ceboid phylogeny.J. Hum. Evol. 6:461–481.Google Scholar
  37. Rosenberger, A. L., Setaguchi, T., and Shigehara, N. (1990). The fossil record of callitrichine primates.J. Hum. Evol. 19:209–236.Google Scholar
  38. Shea, B. T. (1983). Phyletic size change and brain/body allometry: A consideration based on the African pongids and other primates.Int. J. Primatol. 4:33–62.Google Scholar
  39. Shea, B. T. (1988). Primates. In McKinney, Mc. (ed.)Heterochrony in Evolution: A Multidisciplinary Approach, Plenum Press, New York.Google Scholar
  40. Shea, B. T., and Gomez, A. M. (1988). Tooth scaling and evolutionary dwarfism: An investigation of allometry in human pygmies.Am. J. Phys. Anthropol. 77:117–132.Google Scholar
  41. Sussman, R. W., and Kinzey, W. G. (1984). The ecological role of the Callitrichidae: A review.Am. J. Phys. Anthropol. 64:419–449.Google Scholar
  42. Thaler, L. (1973). Nanisme et gigantisme insulaires.La Recherche 4:741–750.Google Scholar
  43. Thorington, R. W., and Anderson, S. (1984). Primates. In Anderson, S., and Jones, J. K. (eds.),Orders and Families of Recent Mammals of the World, John Wiley and Sons, New York, pp. 187–217.Google Scholar
  44. Van Rosmalen, M. G. M., Mettermeir, R. A., and Milton, K. (1981). The bearded sakis, genusChiropotes. In Coimbra-Filho, A. F., and Mittermeier, R. A. (eds.),Ecology and Behavior of Neotropical Primates, Vol. 1, Acad. Brasileira de Ciencias, Rio de Janeiro, pp. 419–422.Google Scholar
  45. Wolpoff, M. H. (1985). Tooth size-body size scaling in a human population. In Jungers, W. L. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York, pp. 273–318.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • J. Michael Plavcan
    • 1
  • Anne M. Gomez
    • 1
  1. 1.Department of Biological Anthropology and AnatomyDuke University Medical CenterDurham

Personalised recommendations