Siberian Mathematical Journal

, Volume 8, Issue 4, pp 595–602 | Cite as

V- and V′-groups

  • Sh. S. Kemkhadze


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B.I. Plotkin, Generalized Solvable and Generalized Nilpotent Groups, Uspekhi Matem. Nauk.13, No. 4, 89–172 (1958).Google Scholar
  2. 2.
    A.G. Kurosh and S.N. Chernikov, Solvable and Nilpotent Groups, Uspekhi Matem. Nauk,2, No.3, 18–59 (1947).Google Scholar
  3. 3.
    Sh.S. Kemkhadze, Quasi-Nilpotent Groups, Doklady Ak. Nauk SSSR,158, No.3, 504–512 (1964).Google Scholar
  4. 4.
    R. Baer, Nilgruppen, Math. Zh.,62, No.4, 402–430 (1955).Google Scholar
  5. 5.
    Sh.S. Kemkhadze, On the Definition of the Baer Nilgroup. Soobshch. Ak. Nauk Gruz. SSR,33, No. 2, 279–284 (1964).Google Scholar
  6. 6.
    B.I. Plotkin, Radical Groups, Matem. Sb.,37, No.3, 507–526 (1955).Google Scholar
  7. 7.
    A.I. Mal'tsev, Certain Classes of Infinite Solvable Groups, Matem. Sb.,28, No.3, 567–588 (1951).Google Scholar
  8. 8.
    B.A. Gol'berg, Infinite Semisimple Groups, Matem. Sb. 17, No.1, 131–142 (1945).Google Scholar
  9. 9.
    H. Fitting, Beiträge zur Theorie der Gruppen endlicher Ordnung [Contribution to the Theory of Groups of Finite Order], Jahresber. Detsch. Math. Ver.,48, No. 5-8, 77–141 (1938).Google Scholar
  10. 10.
    A.G. Kurosh, Theory of Groups [in Russian], Gostekhizdat, Moscow (1953).Google Scholar
  11. 11.
    B.I. Plotkin, Radical and Semisimple Groups, Trudy Mosk. Matem. Obshch., 6, 255–337 (1957).Google Scholar
  12. 12.
    D.M. Smirnov, One Class of Infinite Groups, Uchen. zap. Ivanovsk. ped. Inst.,5, 57–61 (1954).Google Scholar

Copyright information

© Consultants Bureau 1967

Authors and Affiliations

  • Sh. S. Kemkhadze

There are no affiliations available

Personalised recommendations