Siberian Mathematical Journal

, Volume 8, Issue 4, pp 555–559 | Cite as

One class of finite groups

  • Ya. G. Berkovich


Finite Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. Bauman, Nonsclvable JC-groups. Proc. Amer. Math. Soc.,15, No. 5, 823–827 (1964).Google Scholar
  2. 2.
    S.A. Chunikhin, Subgroups of Finite Groups [in Russian], Minsk (1964).Google Scholar
  3. 3.
    W. Gaschütz, Zur Erweiterungstheorie der endlichen Gruppen. J. reine angew. Math.,190, No. 2, 93–107 (1952).Google Scholar
  4. 4.
    I. Redei, Die endlichen eiustüfig nichtuilpotenten Gruppen, Publ. Math. Debercen, No. 4, 303–324 (1956).Google Scholar
  5. 5.
    H. Wielandt, Sylowgruppen und Kompositionsstruktur, Abh. Math. Sem. Univ. Hamburg, No. 22, 215–228 (1958).Google Scholar
  6. 6.
    W. Feit, A Characterization of Simple Groups SL (2,2a), Amer. J. Math., No. 82, 281–300 (1960).Google Scholar
  7. 7.
    R. Brauer and M. Suzuki, On Finite Groups of Even Order Whose 2-Sylow Group is a Quaternion Group, Proc. Nat. Acad. Sci., 45, No. 12, 1757–1759, USA (1959).Google Scholar
  8. 8.
    D. Gorenstein and J. H. Walter, On Finite Groups with Dihedral 2-Sylow Subgroups, Illinois J. Math., No. 6, 553–593 (1962).Google Scholar
  9. 9.
    G. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Intersci, Publ. (1962).Google Scholar
  10. 10.
    M. Hall, Theory of Groups [Russian translation], IL, Moscow (1962).Google Scholar
  11. 11.
    J. G. Thompson, Normal p-Complements for Finite Groups, J. of Algebra,1, No. 1, 43–46 (1964).Google Scholar

Copyright information

© Consultants Bureau 1967

Authors and Affiliations

  • Ya. G. Berkovich

There are no affiliations available

Personalised recommendations