Skip to main content
Log in

Lipid metabolism of chick epiphyseal bone and cartilage

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

The content and composition of lipids of chick epiphyseal tissue were investigated. The amounts of total lipids, triglycerides and phospholipids in bone were 7.50, 7.81 and 1.02 mg/g, respectively, and in cartilage, 5.20, 1.46 and 0.53 mg/g, respectively. The main fatty acids of both bone and cartilage were palmitic and oleic in phospholipids, and palmitic, oleic and linoleic in triglycerides. For the substrates studied, the order of incorporation into total lipids of both bone and cartilage was palmitate > glucose > acetate > citrate. Acetate was the main precursor for iatty acid synthesis whereas only a minor portion of glucose was found in the fatty acids. Esterification appeared to be the predominant pathway of lipid synthesis in chick bone and cartilage.

Résumé

Le contenu et la composition des lipides du tissue épiphysaire ont été étudiés chez le poulet. Les valeurs des lipides totaux, des triglycérides et des phospholipides sont, respectivement dans l'os, de 7,50, 1,81 et 1,02 mg/g et, dans le cartilage, de 5,20, 1,46 et 0,53 mg/g. Les principaux acides gras trouvés dans l'os aussi bien que dans le cartilage sont les acides palmitique et oléique, parmi les phospholipides, et les acides palmitique, oléique et linoléique parmi les triglycérides. Quant aux substrats étudiés, l'ordre d'incorporation dans les lipides totaux de l'os et du cartilage a été: palmitate > glucose > acétate > citrate. L'acétate était le principal précurseur dans la synthèse des acides gras, alors que seule une faible protion de glucose a été trouvée dans les acides gras. L'estérification semble donc être la voie prédominante de la synthèse des lipides dans l'os et le cartilage du poulet.

Zusammenfassung

Es wurde eine Untersuchung über den Gehalt und die Zusammensetzung der Lipide im Epiphysengewebe von Hühnchen durchgeführt. Es wurden 7,50 mg Gesamtlipide, 1,81 mg Triglyceride und 1,02 mg Phospholipide per Gramm Knochen gefunden. Die entsprechenden Werte per Gramm Knorpel waren 5,20, 1,46 und 0,53 mg. Die hauptsächlichsten Fettsäuren in den Phospholipiden von Knochen- und Knorpelgewebe waren Palmitin- und Ölsäure, in den Triglyceriden Palmitin-, Öl- und Linolsäure. Die untersuchten Verbindungen wurden in nachstehender Reihenfolge in Knochen- und Knorpel-Lipide eingebaut: Palmitin > Glucose > Acetat > Citrat. Acetat war die hauptsächliche Ausgangssubstanz für die Fettsäure-Synthese, während nur ein unbeträchtlicher Teil der Glucose in den Fettsäuren vorgefunden wurde. Veresterung ist anscheinend der vorherrschende Weg der Fettsynthese in Knorpel- und Knochengewebe von Hühnchen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baron, D. N., Bell, J. L.: Compleximetric determination of calcium in pathological and physiological specimens. J. clin. Path.12, 143–148 (1959).

    PubMed  Google Scholar 

  2. Bartlett, G. R.: Phosphorus assay in column chromatography. J. biol. Chem.234, 466–468 (1959).

    PubMed  Google Scholar 

  3. Brighton, C. T., Ray, R. D., Soble, L. W., Keuttner, K. E.:In vitro epiphyseal-plate growth in various oxygen tensions. J. Bone Jt Surg.51 A, 1383–1396 (1969).

    Google Scholar 

  4. Borgström, B.: Investigation on lipid separation methods. Separation of phospholipid from neutral fat and fatty acids. Acta physiol. scand.25, 101–110 (1952).

    PubMed  Google Scholar 

  5. Chattopadhyay, H., Freeman, S.:14C-labeled glucose metabolism by bone from normal and parathyroid-treated rats. Amer. J. Physiol.208, 1036–1041 (1965).

    PubMed  Google Scholar 

  6. Cohn, D. V., Griffith, F. D.: The influence of parathyroid extract on oxidative and decarboxylative pathways in bone. In: The parathyroid glands: Ultrastructure, secretion amd function (P. J. Gaillard, R. V. Talmage, and A. N. Budy, eds.), p. 231–247. Chicago: University of Chicago Press 1965.

    Google Scholar 

  7. Cruess, D. L., Clark, I.: Alterations in the lipids of bone caused by hypervitaminosis A and D. Biochem. J.96, 262–265 (1965).

    PubMed  Google Scholar 

  8. ——: Effect of hypervitaminosis D upon the phospholipids of metaphyseal and diaphyseal bone. Proc. Soc. exp. Biol. (N.Y.)126, 8–11 (1967).

    Google Scholar 

  9. Deiss, W. P., Jr., Holmes, L. B., Johnston, C. C.: Bone matrix biosynthesisin vitro. I. Labeling of hexosamine and collagen of normal bone. J. biol Chem.237, 3555–3559 (1962).

    PubMed  Google Scholar 

  10. Fiske, C. H., Subbarow, Y.: The colorimetric determination of phosphorus. J. biol. Chem.66, 375–400 (1925).

    Google Scholar 

  11. Flanagan, B., Nichols, G., Jr.: Metabolic studies of bonein vitro. IV. Collagen biosynthesis by surviving bone fragmentsin vitro. J. biol Chem.237, 3686–3692 (1962).

    PubMed  Google Scholar 

  12. Folch, J., Lees, M., Sloane-Stanley, G. H.: A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem.226, 497–509 (1957).

    PubMed  Google Scholar 

  13. Goldhaber, P.: The effect of hyperoxia on bone resorption in tissue culture. Arch. Path.66, 635–641 (1958).

    Google Scholar 

  14. Guri, C. D., Plume, S. K., Bernstein, D. S.: Rat epiphyseal cartilage. III. Metabolism of glucose-C14, in vitro. Proc. Soc. exp. Biol. (N.Y.)124, 373–379 (1967).

    Google Scholar 

  15. Havivi, E., Bernstein, D. S.: Lipid metabolism in normal and rachitic rat epiphyseal cartilage. Proc. Soc. exp. Biol. (N.Y.)131, 1300–1304 (1969).

    Google Scholar 

  16. —: Vitamin A, sulfation and bone growth in the chick. J. Nutr.92, 467–473 (1967).

    PubMed  Google Scholar 

  17. Irving, J. T.: Bone matrix lipids and calcification. In: Calcified tissues (L. J. Richelle and M. J. Dallemagne, eds.), Les Congrès et Colloques de l'Université de Liège, p. 313–324 (1965).

  18. Lambert, M., Neish, A. C.: Rapid method for estimation of glycerol in fermentation solutions. Canad. J. Res.,28, 83–89 (1950).

    Google Scholar 

  19. Leach, A. A.: The lipids of ox compact bone. Biochem. J.69, 429–437 (1958).

    PubMed  Google Scholar 

  20. Löwenstein, I. M.: Citrate and the conversion of carbohydrate into fat. In: The metabolic role of citrate (T. W. Goodwin, ed.), Biochem. Soc. Sympos. No 27, p. 61–86. New York and London: Academic Press 1968.

    Google Scholar 

  21. Peck, W. A., Dirksen, T. R.: The metabolism of bone tissuein vitro. Clin. Orthop.48, 243–265 (1966).

    PubMed  Google Scholar 

  22. Penton, Z. G.: Some effects of administration of fluoride on calcifying cartilage in rat. Proc. Soc. exp. Biol. (N.Y.)129, 978–981 (1968).

    Google Scholar 

  23. Sakai, T., Cruess, R. L.: Effect of cortisone on the lipids of bone matrix in the rat. Proc. Soc. exp. Biol. (N.Y.)124, 490–493 (1967).

    Google Scholar 

  24. —, Yoshinari, T., Cruess, R. L.: Effect of growth hormone upon the lipids of bone matrix. Endocrinology83, 51–55 (1968).

    PubMed  Google Scholar 

  25. Schneider, W. C.: Determination of nucleic acids in tissues by pentose analysis. In: Methods of enzymology (S. P. Colowick and N. O. Kaplan, eds.), vol. 3, p. 680–687. New York and London: Academic Press 1957.

    Google Scholar 

  26. Schmidt, A. A., Yusupova, I. U., Liberman, S. G., Faivishevskii, M. D.: Fatty acid composition of fat obtained from various kinds of bones. Maslozhir. Prom.34, 12–15 (1968), quoted in: Chem. Abstr. (Biochemistry Section)69, No 95219 (1968).

    Google Scholar 

  27. Srere, P. A.: The molecular physiology of citrate. Nature (Lond.)205, 766–770 (1960).

    Google Scholar 

  28. Stoffel, W., Chu, F., Ahrens, E. H., Jr.: Analysis of long-chain fatty acids by gas-liquid chromatography. Micromethod for preparation of methyl esters. Analyt. Chem.31, 307–308 (1959).

    Article  Google Scholar 

  29. Travis, D. F.: Matrix and mineral deposition in skeletal structures of the decapod crustacea (Phylum Arthoopoda). In: Calcification in biological systems (R. F. Soggnaes, ed.), p. 57–116. Amer. Assoc. Advanc. Sci. 1960.

  30. Wolinsky, I., Cohn, D. V.: Oxygen uptake and14CO2 production from citrate and isocitrate by control and parathyroid hormone-treated bone maintained in tissue culture. Endocrinology84, 28–35 (1969).

    PubMed  Google Scholar 

  31. Wuthier, R. E.: Lipids of mineralizing epiphyseal tissue in the bovine fetus. J. Lipid Res.9, 68–78 (1968).

    PubMed  Google Scholar 

  32. Zambotti, V., Cescon, I., Bonferroni, B., Bolognani, L.: Lipids on epiphyseal cartilage. Experientia (Basel)18, 318–319 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolinsky, I., Guggenheim, K. Lipid metabolism of chick epiphyseal bone and cartilage. Calc. Tis Res. 6, 113–119 (1970). https://doi.org/10.1007/BF02196190

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02196190

Key words

Navigation