Semigroup Forum

, Volume 12, Issue 1, pp 251–264 | Cite as

Continuously factorable groupoids

  • Hung-tzaw Hu
  • Kermit Sigmon
Research Article
  • 14 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. H. Clifford,Connected ordered topological semiqroups with idempotent endpoints, Trans. Amer. Math. Soc.88 (1958), 80–98.Google Scholar
  2. [2]
    H. Cohen and R. J. Koch,Acyclic semigroups and multiplications on two-manifolds, Trans. Amer. Math. Soc.118 (1965), 420–427.Google Scholar
  3. [3]
    H. T. Hu, Continuum Semigroups with Midunit, Doctoral Dissertation, University of Florida, 1974.Google Scholar
  4. [4]
    Anne Lester Hudson,Example of nonacyclic semigroup with zero and S =ESE, Proc. Amer. Math. Soc.14 (1963), 648–653.Google Scholar
  5. [5]
    J. D. McCharen,Maximal Elements in Compact Semigroups, doctoral dissertation, Louisiana State University, 1969.Google Scholar
  6. [6]
    A. B. Paalman-de Miranda,Topological Semigroups (2nd Ed.), Mathematical Center Amsterdam, 1970.Google Scholar
  7. [7]
    Wladimir Scheffer,Generalizations of the homotopy lemma for Alexander cohomology and homotopy classes of maps between topological groups, Master Thesis, University of Florida, 1971.Google Scholar
  8. [8]
    Kermit Sigmon,A strong homotopy axiom for Alexander cohomology, Proc. Amer. Math. Soc.31 (1972), 271–275.Google Scholar
  9. [9]
    A. D. Wallace,A theorem on acyclicity, Bull. Amer. Math. Soc.67 (1961), 123–124.Google Scholar
  10. [10]
    ——,Acyclicity of compact connected semigroups, Fund. Math.50 (1961), 99–105.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1976

Authors and Affiliations

  • Hung-tzaw Hu
    • 1
    • 2
  • Kermit Sigmon
    • 1
    • 2
  1. 1.College of Notre DameBelmontCalifornia
  2. 2.University of FloridaGainesville

Personalised recommendations