Semigroup Forum

, Volume 11, Issue 1, pp 189–282 | Cite as

A survey of semigroups of continuous selfmaps

  • K. D. MagillJr.
Survey Article

Keywords

Topological Space Maximal Subgroup Left Ideal Hausdorff Space Regular Element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Arens, R.F.,A topology for spaces of transformations, Annals of Mathematics 47 (1946), 480–495.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    ——, and J. Dugundji,Topologies for function spaces, Pacific J. Math. 1 (1951), 5–31.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Beidleman, J.C.,On groups and their near-rings of functions, Amer. Math. Monthly 73 (1966), 981–983.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Berman, G. and R. J. Silverman,Simplicity of near-rings of transformations, Proc. Amer. Math. Soc. 10 (1959), 456–459.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bruck, R. H.,A survey of binary systems, Springer-Verlag, New York (1966).MATHGoogle Scholar
  6. 6.
    Cassel, R. T.,The ideal structure of some semigroups of continuous functions, Master's thesis at State University of New York at Buffalo (1968).Google Scholar
  7. 7.
    Cezus, F. A.,Green's relations in semigroups of functions, Ph.D. thesis at Australian National University, Canberra, Australia (1972).Google Scholar
  8. 8.
    ——, K. D. Magill, Jr. and S. Subbiah,Maximal ideals of semigroups of endomorphisme, Bull. Aust. Math. Soc. 12 (1975), 211–225.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Clifford, A.H. and G. B. Preston,The algebraic theory of semigroups, Math. Surveys 7, Amer. Math. Soc.; Providence, Rhode Island; I (1961); II(1967).MATHGoogle Scholar
  10. 10.
    Cook, H. and W.T. Ingram,Obtaining AR-like continua as inverse limits with only two bonding maps, Glasnik Math. 4(24)2 (1969), 309–311.MathSciNetMATHGoogle Scholar
  11. 11.
    Englekíng, R. and S. Mrowka,On E-compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Math. Astr. Phys. 6 (1958), 492–496.Google Scholar
  12. 12.
    Fine, N. J. and G. E. Schweigert,On the group of homeomorphisms of an arc, Annals of Math. 62 (1955), 237–253.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fox, R.H.,On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945), 429–432.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    ——,Recent developments of knot theory at Princeton, Proc. International Congress of Math. Cambridge 2 (1950), 453–457.Google Scholar
  15. 15.
    Gavrilov, M.,On a semigroup of continuous functions, Godishn. Sofiisk. un-ta. matem. f-t (1964), 377–380.Google Scholar
  16. 16.
    Gelfand, I. and A. Kolmogoroff,On rings of continuous functions on topological spaces, Dokl. Akad. Nauk SSSR 22 (1939), 11–15.MATHGoogle Scholar
  17. 17.
    Gillman L. and M. Jerison,Rings of continuous functions, Van Nostrand, Princeton, N. J. (1960).CrossRefMATHGoogle Scholar
  18. 18.
    Gluskin, L. M.,Semigroups of topological mappings, Dokl. Akad. Nauk SSR 125 (1959), 699–702MathSciNetMATHGoogle Scholar
  19. 19.
    ——,Transitive semigroups of transformations, Dokl. Akad. Nauk SSR 129 (1959), 16–18.MathSciNetMATHGoogle Scholar
  20. 20.
    ——,The semigroup of homeomorphic mappings of an interval, Mat. Sb. (N.S.) 49(91) (1959), 13–28.MathSciNetGoogle Scholar
  21. 21.
    —,On a semigroup of continuous functions, Dopovidi Akad. Nauk Ukrain. RSR (1960), 582–585.Google Scholar
  22. 22.
    ——,The semigroup of homeomorphic mappings of an interval, Amer. Math. Soc. Transl. (20) 30 (1963), 273–290.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    ——,Semigroups of topological transformations, Izv. Vysš. Učebn. Zaved. Matematika 1(32) (1963), 54–65.MathSciNetGoogle Scholar
  24. 24.
    Green, J.A.,On the structure of semigroups, Annals of Math. 54 (1951), 163–172.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    De Groot, J.,Groups represented by homeomorphism groups, I, Math. Annalen 138 (1959), 80–102.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Harris, B. and L. Schoenfeld,The number of indempotent elements in symmetric semigroups, J. Comb. Theory 3 (1967), 122–135.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    ——,Erratum to: The number of idempotent elements in symmetric semigroups, J. Comb. Theory 5 (1968), 104.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hedrlin, Z. and A. Pultr,Remark on topological spaces with given semigroups, Comment. Math. Univ. Carol. 4 (1963), 161–163.MathSciNetMATHGoogle Scholar
  29. 29.
    Higman, G.,On infinite simple permutation groups, Publ. Math. Debrecen 3 (1954), 221–226.MathSciNetMATHGoogle Scholar
  30. 30.
    Hocking, J. G. and G. S. Young,Topology, Addison-Wesley (1961).Google Scholar
  31. 31.
    Hofer, R. D.,Algebraic structures for families of continuous functions, Ph.D. thesis at State University of New York at Buffalo (1971).Google Scholar
  32. 32.
    ——,Restrictive semigroups of continuous functions on O-dimensional spaces, Canad. Math. Journ. 4(24) (1972), 598–611.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    ——,Restrictive semigroups of continuous selfmaps on arcwise connected spaces, Proc. London Math. Soc. (3) 25 (1972), 358–384.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Hofmann, K. H. and P. S. Mostert,Elements of compact semigroups, Charles E. Merrill Books, Inc. Columbus, Ohio (1966).MATHGoogle Scholar
  35. 35.
    Homma, T.,A theorem on continuous functions, Kodai Math. Sem. Rep. 1 (1952), 13–16.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Howie, J. M.,The subsemigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc. 41 (1966), 707–716.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Hurewicz, W. and H. Wallman,Dimension theory, Princeton Univ. Press (1941).Google Scholar
  38. 38.
    Jacobson, N.,Structure of rings, Amer.Math.Soc., Providence (1956).CrossRefMATHGoogle Scholar
  39. 39.
    Jarnik, V. and V. Knichal,Sur l'approximation des fonctions continues par les superpositions de deux fonctions, Fund. Math. 24 (1935), 206–208.MATHGoogle Scholar
  40. 40.
    Kim, H. O.,On the product of structure spaces, Kyungpook Math. J. 11 (1971), 29–32.MathSciNetMATHGoogle Scholar
  41. 41.
    Lipiński, J. S.,Sur l'uniformization des fonctions continues, Bull. de l'Acad. Polon. Sci. III 5 (1957), 1019–1021.MATHGoogle Scholar
  42. 42.
    Ljapin, E. S.,Abstract characterization of certain semigroups of transformations, Leningradskii Gosudarstvenny Pedayogičeskii Institut im. A. I. Gercena. Učenye Zapinski (Leningrad).Google Scholar
  43. 43.
    Magill, Jr., K. D.,Semigroups of continuous functions, Amer. Math. Monthly 71 (1964), 984–988.MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    ——,Some homomorphism theorems for a class of semigroups, Proc. London Math. Soc. (3) 14 (1965), 517–526.MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    ——,Semigroups of functions on topological spaces, Proc. London Math. Soc. (3) 14 (1966), 507–518.MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    ——,Semigroup structures for families of functions, II;continuous functions, J. Aust. Math. Soc. 7 (1967), 95–107.MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    ——,Another S-admissible class of spaces, Proc. Amer. Math. Soc. 8 (1967), 95–107.MathSciNetMATHGoogle Scholar
  48. 48.
    ——,Subgroups of semigroups of functions, Port. Math. 26 (1967), 133–147.MathSciNetMATHGoogle Scholar
  49. 49.
    ——,Topological spaces determined by left ideals of semigroups, Pac. Math. J. (2) 24 (1968), 319–330.MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    ——,Restrictive semigroups of closed functions, Can. J. Math. 20 (1968), 1215–1229.MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    ——,Semigroups of functions generated by idempotents, London Math. J. 44 (1969), 236–242.MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    ——,Isotopisms of semigroups of functions, Trnas. Amer. Math. Soc. 148 (1970), 121–128.MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    ——,Structure spaces of semigroups of continuous functions, Trans. Amer. Math. Soc. 149 (1970), 595–600.MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    ——,K-structure spaces of semigroups generated idempotents, London Math. J. (2) 3 (1971), 321–325.MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    ——, I-subsemigroups and α-monomorphisms, J. Aust. Math. Soc. 16 (1973), 146–166.MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    ——,Semigroups which admit few embeddings, Fund. Math. 85 (1974), 37–53.MathSciNetMATHGoogle Scholar
  57. 57.
    —,Embedding the full transformation semigroup into S(X) (to appear).Google Scholar
  58. 58.
    —— and S. Subbiah,Green's relations for regular elements of semigroups of endomorphisms, Can. J. Math. 26 (1974), 1484–1497.MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    ——,Embedding S(X)into S(Y), Dissertiones Math. 120 (1974), 1–47.MathSciNetMATHGoogle Scholar
  60. 60.
    — and —,The partially ordered family of regular R-classes of S(X), Aequat. Math. (to appear).Google Scholar
  61. 61.
    ——,Schützenberger groups of some irregular H-classes, Semigroup Forum 10 (1975), 283–314.MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    ——,Schützenberger groups of H-classes a containing odd degree polynomials, Semigroup Forum, 11 (1975), 49–78.MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    — and —,Green's relations for regular elements of sandwich semigroups, II;semigroups of continuous functions (to appear).Google Scholar
  64. 64.
    Mal'cev, A.A.,Semigroups of continuous functions, First Tiraspol Symposium on General Topology, Moscow (1965).Google Scholar
  65. 65.
    —,On a class of topological spaces, Thesis for a report at the GSM, Moscow (1966), 23.Google Scholar
  66. 66.
    ——,A remark on a theorem of Gavrilov, Trudy Trash PI, Matematika 37 (1966), 30–32.Google Scholar
  67. 67.
    Mal'cev, A. I.,Symmetric groupoids, Mat. Sbornik 31 (1952), 136–151.MathSciNetGoogle Scholar
  68. 68.
    McCleary, S. H.,Some simple homeomorphism groups having nonsolvable outer automorphism groups (to appear).Google Scholar
  69. 69.
    Miller, D. D. and A. H. Clifford,Regular D-classes in semigroups, Trans. Amer. Math. Soc. 82 (1956), 270–280.MathSciNetMATHGoogle Scholar
  70. 70.
    Mioduszewski, J.,On a quasi-ordering in the class of continuous mappings of a closed interval into itself, Colloq. Math. 9 (1962), 233–240.MathSciNetMATHGoogle Scholar
  71. 71.
    Mrowka, S.,Further results on E-compact spaces, I, Acta Math. 120 (1968), 161–185.MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Nurutdinov, B.S.,Topologies of spaces described by semigroups of mappings, Vestnik Moskovskogo Universiteta. Matematika (4) 28 (1973), 24–29.MathSciNetMATHGoogle Scholar
  73. 73.
    Paalman-de Miranda, A.B.,Topological representations of semigroups, Mathematisch Centrum Amsterdam. Afdeling Zuivere Wiskunde (1966), ZW-008.Google Scholar
  74. 74.
    Rajagopalan, M. and A. Wilansky,Reversible topological spaces, J. Aust. Math. Soc. 6 (1966), 129–138.MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Reidemeister, K.Knotentheorie, Springer (1932).Google Scholar
  76. 76.
    Schreier, J.,Über Abbildungen einer abstrakten Menge auf ihre Teilmenge, Fund. Math. 28 (1937), 261–264.MATHGoogle Scholar
  77. 77.
    ——, and S. Ulam,Über topologische Abbildungen der euklidschen Sphäre, Fund. Math. 23 (1934), 102–118.MATHGoogle Scholar
  78. 78.
    Schützenberger, M. P.,D représentation des demi-groupes, C. R. Acad. Sci. Paris 244 (1957), 1994–1996.MathSciNetMATHGoogle Scholar
  79. 79.
    Seifert, H. and W. Threlfall,Old and new results on knots, Can. J. Math. 2 (1950), 1–15.MathSciNetCrossRefMATHGoogle Scholar
  80. 80.
    Sierpinski, W.,Sur l'approximation des fonctions continues parles superpositions de quatre fonctions, Fund. Math. 23 (1934), 119–120.MathSciNetMATHGoogle Scholar
  81. 81.
    Sikorski, R. and K. Zarankiewicz,On uniformization of functions (I), Fund. Math. 41 (1954), 339–344.MathSciNetMATHGoogle Scholar
  82. 82.
    Šneperman, L. B.,Semigroups of continuous transformations, Dokl. AN SSSR (3) 144 (1962), 509–511.MathSciNetGoogle Scholar
  83. 83.
    ——,Semigroups of continuous mappings of topological spaces, Sibirsk Mat. Ž. 6 (1965), 221–229.MathSciNetGoogle Scholar
  84. 84.
    Stone, M. H.,Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375–481.MathSciNetCrossRefMATHGoogle Scholar
  85. 85.
    Subbiah, S.,Topics in semigroups of continuous functions. Ph.D. thesis at State University of New York at Buffalo (1973).Google Scholar
  86. 86.
    —,Some finitely generated subsemigroups of S(X), Fund. Math. 87(1975)Google Scholar
  87. 87.
    —,A note on the compact-open topology for semigroups of continuous selfmaps (to appear).Google Scholar
  88. 88.
    Suschkewitsch, A. K.,Theory of operations as a generalized theory of groups, dissertation, Voronezh (1922).Google Scholar
  89. 89.
    Šutov, E. G.,Homomorphisms, of certain semigroups of continuous functions, Sibirsk Mat. Ž. 4 (1963), 693–701.Google Scholar
  90. 90.
    Warndof, J.C.,Topologies uniquely determined by their continuous selfmaps, Fund. Math. 66 (1969/70), 25–43.MathSciNetMATHGoogle Scholar
  91. 91.
    Whittaker, J. V.,On isomorphic groups and homeomorphic spaces, Ann. of Math. (2) 78 (1963), 74–91.MathSciNetCrossRefMATHGoogle Scholar
  92. 92.
    Whyburn, G. T.,Analytic topology, New York AMS Colloquium publication, 28(1942).Google Scholar

Copyright information

© Springer-Verlag New York Inc 1976

Authors and Affiliations

  • K. D. MagillJr.
    • 1
  1. 1.State University of New York at BuffaloAmherst

Personalised recommendations