Semigroup Forum

, Volume 13, Issue 1, pp 377–383 | Cite as

Trees and monotone structures

  • T. E. Hays
Research Article
  • 16 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refefences

  1. 1.
    Hays, T. E.,Irreducible semigroups are monotone. Semigroup Forum, 10 (1975), 25–31.Google Scholar
  2. 2.
    —,Monotone semigroups, in preparation.Google Scholar
  3. 3.
    Hocking, J. and G. S. Young,Topology, Addison-Wesley, Reading, 1961.Google Scholar
  4. 4.
    Hofmann, K. H. and P. S. Mostert,Elements of Compact Semigroups, Charles Merrill, Columbus, Ohio, 1966.Google Scholar
  5. 5.
    Hunter, R.P.,On the semigroup structure of continua, Trans. Math. Soc. 93 (1959), 356–368.Google Scholar
  6. 6.
    Koch, R. J. and A. D. Wallace,Maximal Ideals in compact semigroups, Duke Math. J 21 (1954), 681–685.Google Scholar
  7. 7.
    ——, and I. S. Krule,Weak cutpoint ordering on hereditarily unicoherent continua, Proc. Amer. Math. Soc. 11 (1960), 679–681.Google Scholar
  8. 8.
    Mislove, M. W.,Semigroups over trees, Trans. Amer. Math. Soc. 195 (1974), 383–400.Google Scholar
  9. 9.
    Wallace, A. D.,Recursions with semigroup state spaces, Reve Roumaine de Mathematics Pure et Appliquees, XII (1967), 1411–1415.Google Scholar
  10. 10.
    Ward, L. E.,On dendritec sets, Duke Math. J 25 (1958) 505–514.Google Scholar
  11. 11.
    ——,Mobs, Trees, and fixed points, Proc. Amer. Math. Soc. 8 (1957) 797–804.Google Scholar
  12. 12.
    ——,A note on dendrites and trees, Proc. Amer. Math. Soc. 5 (1954), 992–994.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • T. E. Hays
    • 1
  1. 1.Mathematics DepartmentThe Ohio State UniversityNewark

Personalised recommendations