Semigroup Forum

, Volume 10, Issue 1, pp 39–54 | Cite as

On compactifying semigroups

  • Michael Friedberg
Research Articles

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Math. Surveys, No. 7, Am. Math. Soc., Providence, R. I. (1961)Google Scholar
  2. 2.
    J. G. Dobbins, On the Kernel of a Locally Compact Semigroup, Duke Math. J., Vol. 39, No. 2 (1972), pp. 327–331.Google Scholar
  3. 3.
    M. Friedberg, Metrizable Approximations of Semigroups, Colloq. Math., XXV, No. 1 (1972) pp. 63–69.Google Scholar
  4. 4.
    —, and J. W. Stepp, A Note on the Bohr Compactification, Semigroup Forum (to appear)Google Scholar
  5. 5.
    E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer-Verlag, Berlin (1963).Google Scholar
  6. 6.
    J. A. Hildebrant and J. D. Lawson, Embedding in Compact Uniquely Divisible Semigroups, Semigroup Forum, Vol. 4, No. 4 (1972) pp. 295–300.Google Scholar
  7. 7.
    K. H. Hofmann and P. M. Mostert, Elements of Compact Semigroups, C. E. Merrill, Inc., Columbus, Ohio (1966).Google Scholar
  8. 8.
    Per Holm, On the Bohr Compactification, Math. Annal., 156 (1964) pp. 34–46.Google Scholar
  9. 9.
    R. P. Hunter and L. W. Anderson, On the Infinite Subsemigroups of a Compact Semigroup, Fund. Math., LXXIV (1972) pp. 1–18.Google Scholar
  10. 10.
    W. Maak, Fastperiodische Functionen auf Halbgruppen, Acta Math. Vol. 87 (1952) pp. 33–57.Google Scholar
  11. 11.
    J. von Neumann and E. P. Wigner, Minimally Almost Periodic Groups, Annals of Math., 41 (1940) pp. 746–750.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • Michael Friedberg
    • 1
  1. 1.Department of MathematicsUniversity of HoustonHoustonTexas

Personalised recommendations