Semigroup Forum

, Volume 9, Issue 1, pp 253–260 | Cite as

The semigroup of hall relations

  • Kim Ki-Hang Butler
Article

Keywords

Hall Relation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BRANDON, R. L., HARDY, D. W. and G. MARKOWSKY.The Schützenbeger group of an H-class in the semigroup of bid relations, omens, Semigroup Forum, 5 (1972, 45–53.Google Scholar
  2. 2.
    BUTLER, K. K.-H.Combinatorial properties of binary relations, to appear in the Periodica Mathematica Hungarica.Google Scholar
  3. 3.
    ——,The number of partially ordered sets, J. Comb. Theory, Series B, 13 (1972), 276–289.Google Scholar
  4. 4.
    BUTLER, K. K.-H. and G. MARKOWSKY.Enumeration of finite topologies, Proc. of the Fourth Southeastern on Combinatorics, Graph Theory, and Computing, Utilitas Mathematica Publishing Inc., Winnipeg, Canada, 1973, 169–184.Google Scholar
  5. 5.
    CLIFFORD, A. H. and G. B. PRESTON.The Algebraic Theory of Semigroups, Vol. I, Math. Survey No, 7, Amer. Math. Soc., Providence, R. I., 1961.Google Scholar
  6. 6.
    HALL, P.On representatives of subsets, J. London Math. Soc., 10 (1935), 26–30.Google Scholar
  7. 7.
    PLEMMONS, R. J. and M. T. WEST.On the semigroup, of binary relations, Pac. J. Math., 35 (1970), 743–753.Google Scholar
  8. 8.
    SCHWARZ, Š.On some semigroups in combinatorics, Proc. of Szeged semigroup Conf., Szeged, Hungary, August 1972, 24–29.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1974

Authors and Affiliations

  • Kim Ki-Hang Butler
    • 1
  1. 1.Departamento de MatematicaInstituto de Fisica e MatematicaLisboaPortugal

Personalised recommendations