Advertisement

Semigroup Forum

, Volume 14, Issue 1, pp 95–123 | Cite as

Addendum to a survey of semigroups of continuous selfmaps

  • L. M. Gluskin
  • B. M. Schein
  • L. B. Šneperman
  • I. S. Yaroker
Survey Article

Keywords

Continuous Selfmaps 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [93]
    Aull, C. E. and W. J. Thron,Separation axioms between T0 and T1, Indag Math. 24 (1962) 26–37.Google Scholar
  2. [94]
    Benzaken, C. and H. C. Mayr,Notion de demibande:demi-bandes de type deux, Semigroup Forum 10 (1975), 115–128.Google Scholar
  3. [95]
    Bowman, T.,Left translations of compact semilattices and generalizations, Czechoslovak Math. J. 25 (1975), 369–375.Google Scholar
  4. [96]
    Brechner, B.,Topological groups which are not full homeomorphism groups, Duke Math. J. 39 (1972), 97–99.Google Scholar
  5. [97]
    M. Gerstenhaber,On canonical constructions, Proc. Nat. Acad. USA 41 (1955), 233–236.Google Scholar
  6. [98]
    ——,On canonical constructions, II, Proc. Nat. Acad. Sci. USA 42 (1956), 881–883.Google Scholar
  7. [99]
    ——,On canonical constructions, IV, Proc. Amer. Math. Soc. 8 (1957), 745–749.Google Scholar
  8. [100]
    L. M. Gluskin,Semigroups of continuous deformations, Proc. 3d All-Union Math. Congress, Moscow, vol. 2, 1956, 111–112 (Russian).Google Scholar
  9. [101]
    —,Semigroups of topological transformations, Summaries of talks of the 2nd All-Union topol. conf., Tbilisi, 1959, 12–13 (Russian).Google Scholar
  10. [102]
    ——,Ideals of semigroups of transformations, Matem. Sborn. 47 (1959), 111–130 (Russian).Google Scholar
  11. [103]
    —,Automorphisms of semigroups of topological mappings, Izv. Vyss. UV ebn. Zaved., Mat. 1960, No. 6, 62–73 (Russian).Google Scholar
  12. [104]
    ——,Ideals of semigroups, Matem. Sborn. 55 (1961) 421–448 (Russian).Google Scholar
  13. [105]
    ——,Semigroups of transformations (Summary of the doctoral dissertation), Uspehi Mat. Nauk 17 (1962), No. 4, 233–240 (Russian).Google Scholar
  14. [106]
    ——,Semigroups of transformations, Proc. 4th All Union Math. Congress, Leningrad, vol. 2, 1964, 3–9 (Russian).Google Scholar
  15. [107]
    —,Semigroups of homeomorphisms, Doklady AN Ukrain. SSR, Ser. A (to appear).Google Scholar
  16. [108]
    —, B. M. Schein,Semigroups of transformations of topological spaces, Summaries of talks of the 6th All-Union topol. conf.. Tbilisi, 1972, 38–40. (Russian).Google Scholar
  17. [109]
    Hamishon, A. Z.,Semigroups of multi-valued transformations determining topological spaces, Ukrain. Math. J. 24 (1972), 800–806 (Russian).Google Scholar
  18. [110]
    —,On semigroups of multi-valued continuous transformations determining topological spaces, Izv. Akad. Nauk Bieloruss. SSR, Ser. phys.-math. sci. 1973, No. 5, 10–16. (Russian).Google Scholar
  19. [111]
    ——,Continuous multi-valued transformation semigroups, Ukrain. Math. J. 26 (1974), 775–783 (Russian).Google Scholar
  20. [112]
    Hedrĺin, Z.,On a common fixed point of a commutative transformation semigroup of continuous mappings, Rapport ZW 1962-024, Math. Centrum, Amsterdam, 5 pp.Google Scholar
  21. [113]
    ——,Non-constant continuous transformations form any semigroup with a unity, Nieuw Arch. Wiskunde 14 (1966), 230–236.Google Scholar
  22. [114]
    Hicks, T. L. and A. G. Haddock,On semigroups of functions on topological spaces, J. Math. Anal. and Appl. 28 (1969), 330–335.Google Scholar
  23. [115]
    Howie, J. M. and B. M. Schein,Products of idempotent order-preserving transformations, J. London Math. Soc. (2) 7 (1973), 357–366.Google Scholar
  24. [116]
    Inasaridze, H. N.,On simple semigroups, Matem. Sborn. 57 (1962), 225–232 (Russian).Google Scholar
  25. [117]
    Lee, Y.-L.,Characterising the topology by the class of homeomorphisms, Duke Math. J. 35 (1968) No. 3, 625–629.Google Scholar
  26. [118]
    Ljapin, E. S.,On certain representations of semigroups by transformations, In “H. G. Chebotarev in memoriam”, Kazan'. 1964, 60–66 (Russian).Google Scholar
  27. [119]
    Mustafaev, L. G.,Semigrouds of continuous mappings, Doklady Akad. Nauk SSSR 215 (1974), 543–546 (Russian).Google Scholar
  28. [120]
    ——,Semigrouds of continuous mappings of topological spaces, Doklady Akad. Nauk SSSR 218 (1974), 757–760 (Russian).Google Scholar
  29. [121]
    O'Reilly, S. B., The characteristic semigroup of a topological space, Gen. Topol. and Appl. 5 (1975), 95–106.Google Scholar
  30. [122]
    Orlov, S. D.,Topologization of a generalized group of open partial homeomorphisms of a locally compact Hausdorff space, Izv. Vysš. Učebn. Zaved., Mat. 1974, No. 11, 61–68 (Russian).Google Scholar
  31. [123]
    ——,On the theory of topological generalized groups, Theory of Semigroups and Its Appl., Saratov, 3 (1974), 80–85. (Russian).Google Scholar
  32. [124]
    Rosicky, J.,Remarks on topologies uniquely determined by their continuous self maps, Czechoslovak Math. J. 24 (1974), 373–377.Google Scholar
  33. [125]
    ——,The topology of the unit interval is not uniquely determined by its continuous self maps among set systems, Colloq. Math. 31 (1974), 179–188.Google Scholar
  34. [126]
    Rosicky, J. and M. Sekanina,Realizations of topologies by set-systems, Colloq. Math. Soc. J. Bolyai 8 (1972), (Topics in Topology, Készthély), 535–555.Google Scholar
  35. [127]
    Schein, B. M.,Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism Semigroups, Fund. Math. 68 (1970), 31–50.Google Scholar
  36. [128]
    —,Differentiable manifold is characterized by the pseudogroup of its local homeomorphisms, Materials of the 2nd Baltic geom. conf., Tartu, 1965, 179-182 (Russian).Google Scholar
  37. [129]
    ——,Products of idempotent order-preserving transformations of arbitrary chains, Semigroup Forum 11 (1976), 297–309.Google Scholar
  38. [130]
    Sneperman, L. B.,Semigroups of continuous transformations and homeomorphisms of a simple arc, Doklady Akad. Nauk SSSR 146 (1962), 1301–1304. (Russian).Google Scholar
  39. [131]
    ——,Semigroups of continuous transformations of metric spaces, Matem. Sborn. 61 (1963), 306–318 (Russian).Google Scholar
  40. [132]
    —,Semigroups of continuous transformations of closed sets of the real line, Izv. Vyss. Učebn. Zaved., Mat. 1965, No. 6, 166–175 (Russian).Google Scholar
  41. [133]
    —,The semigroup of homeomorphisms of a simple arc, Izv. Vyss Učebn. Zaved., Mat. 1966, No. 2, 127–136. (Russian).Google Scholar
  42. [134]
    ——,Representations of topological semigroups by continuous transformations, Doklady Acad. Nauk SSSR 167 (1966), 768–771 (Russian).Google Scholar
  43. [135]
    ——,On embedding a topological semigroup in a bicompact topological semigroup, Učenye Zapiski Leningrad. Gos. Pedagog. Inst. A. I. Gercen 328 (1967), 267–275 (Russian).Google Scholar
  44. [136]
    ——,Continuous transformation semigroups, Doklady Akad. Nauk Bieloruss. SSR 14 (1970), 493–495 (Russian).Google Scholar
  45. [137]
    —,Denselv embedded ideals of topological semigroups, Izvestija Akad. Nauk Bieloruss. SSR, Ser. phys.-math. sci. 1969, No. 6, 19–24 (Russian).Google Scholar
  46. [138]
    —,Representations of topological semigroups, Summaries of talks of the Inter-university Sympos. on General Algebra, Tartu, 1966, 197–214. (Russian).Google Scholar
  47. [139]
    Šgutov, È. G.,On homomorphisms of certain semigroups of continuous monotone functions, Sibirsk. Mat. urn. 4 (1963), 944–950 (Russian).Google Scholar
  48. [140]
    Thornton, M. C.,Spaces with given homeomorphism groups, Proc. Amer. Math. Soc. 33 (1972), 127–131.Google Scholar
  49. [141]
    Thron, W. J.,Lattice equivalence of topological spaces, Duke Math. J. 29 (1962), 671–680.Google Scholar
  50. [142]
    Vobach, A. R.,On subgroups of the homeomorphism group of the Cantor set, Fund. Math. 60 (1967), 47–52.Google Scholar
  51. [143]
    Wechsler, M. T.,Homeomorphism groups of certain topological spaces, Ann. Math. 62 (1955), 360–373.Google Scholar
  52. [144]
    Yaroker, I. Š.,On semigroups of homeomorphic transformations of bounded closed sets of dimension 0, Izv. Vys- s. Učebn. Zaved., Mat. 1971, No. 10, 89–96 (Russian).Google Scholar
  53. [145]
    ——,Automorphisms of semigroups of homeomorphisms, Proc. Kharkov. Agricultural Inst. V. V. Dokučaev 148 (1971), 93–97 (Russian).Google Scholar
  54. [146]
    —,Semigroups of homeomorphisms of certain topological spaces, Doklady Akad. Nauk Ukrain. RSR, Ser. A, (1972), No. 11, 1008–1009 (Ukrainian). [147]Žitomirskiî, G. I.,On of topological generalized groups, Trudy Molodyh Učenyh, Mat. i Meh., Saratov, 1969, 34–39 (Russian).Google Scholar

Copyright information

© Springer-Verlag New York Inc 1977

Authors and Affiliations

  • L. M. Gluskin
    • 1
  • B. M. Schein
    • 2
  • L. B. Šneperman
    • 3
  • I. S. Yaroker
    • 4
  1. 1.KharkovUSSR
  2. 2.SaratovUSSR
  3. 3.MinskUSSR
  4. 4.KharkovUSSR

Personalised recommendations