The role of chirality in the origin of life

Summary

The role of chirality in the theories that determine the origin of life are reemphasized—in particular the fact that almost all amino acids utilized in living systems are of thel type. Starting fromZ 0 interactions, I speculate on an explanation of the above fact in terms of quantum mechanical cooperative and condensation phenomena (possibly in terms of ane-n condensate where thee-n system has the same status as Cooper-pairing), which could give rise to second-order phase transitions (includingd tol transformations) below a critical temperatureT c. As a general rule,T c is a low temperature. From this, it is conceivable that the earth provided too hot a location for the production ofl amino acids. I suggest laboratory testing of these ideas by looking for the appropriate phase transitions.

This is a preview of subscription content, log in to check access.

References

  1. Abrikosov AA (1987) Fundamentals of the theor of metals. Elsevier, North Holland, pp 345–347

    Google Scholar 

  2. Arnold P, McLerran L (1987) Sphalerons, small fluctuations and baryon-number violation in electroweak theory. Phys. Rev D36:581–595

    Google Scholar 

  3. Atkins KR (1959) Liquid helium. Cambridge University Press, New York, p 42

    Google Scholar 

  4. Avetisov VA, Kus'min VV, Anikin SA (1987) Sensitivity of chemical chiral systems to weak asymmetric factors. Chem Phys 112:179–187

    Google Scholar 

  5. Chela-Flores J (1985) Evolution as a collective phenomenon. J Theor Biol 117:107–118

    Google Scholar 

  6. Chyba CF, Thomas PJ, Brookshaw L, Sagan C (1990) Cometary delivery of organic molecules to the early Earth. Science 249: 366–373

    Google Scholar 

  7. Cronin JR (1989) Origin of organic compounds in carbonaceous chrondrites. Adv Space Res 9:54–64

    Google Scholar 

  8. Cruikshank DP (1989) Dark surfaces of asteroids and comets: evidence for macromolecular carbon compounds. Adv Space Res 9:65–71

    Google Scholar 

  9. Delbrück M (1963) In commemoration of the 50th anniversary of Niels Bohr's papers on atomic constitution, Session on Cosmos and Life, Institute for Theoretical Physics, Copenhagen, pp 41–67

    Google Scholar 

  10. Engel MH, Macko SA, Silfer JA (1990) Carbon isotope composition of individual amino acids in the Murchinson meteorite. Nature 348:47–49

    Google Scholar 

  11. Goodstein DL (1985) States of matter: Dover Publications, New York, pp 386–391

    Google Scholar 

  12. Hanel R, Conrath B, Flasar M, Kunde V, Lowman P, Maguire W, Pearl J, Pirraglia J, Samuelson R, Gautier D, Gierasch P, Kumar S, Ponnamperuma C (1979a) Infrared observations of the Jovian system from Voyager 1. Science 204:972–976

    Google Scholar 

  13. Hanel R, Conrath B, Flasar M, Herath L, Kinde V, Louman P, Maguire W, Pearl J, Pirraglia J, Samuelson R, Gautier D, Gierasch P, Horn L, Kumar S, Ponnamperuma C (1979b) Infrared observations of the Jovian system from Voyager 2. Science 206:952–956

    Google Scholar 

  14. Harris MJ, Loving CE, Sandars PGH (1978) Atomic shielding and PNC optical rotation in bismuth. J. Phys B11:L749-L753

    Google Scholar 

  15. Knervolden KA, Lawless J, Ponnamperuma C (1971) Nonprotein amino acids in the Murchinson meteorite. Proc Natl Acad Sci USA 68:486–490

    Google Scholar 

  16. Kondepudi KD, Nelson CW (1985) Weak neutral currents and the origin of biomolecular chirality. Nature 314:438–441

    Google Scholar 

  17. Kuzmin V, Rubakov V, Shaposhnikov M (1985) On the anomalous electroweak baryon-number non-conservation in the early universe. Phys Lett 155B:36–42

    Google Scholar 

  18. Landau LD, Lifschitz EM, Pitaevskii LP (1980) Statistical physics, part II, vol 9. Pergamon, New York

    Google Scholar 

  19. Leggett A (1990) In: Davies P (ed) The new physics. Cambridge University Press, New York, p 276

    Google Scholar 

  20. Mason SF, Tranter GE (1984) The parity-violating energy difference between enantiomeric molecules. Mol Phys 53:1091–1111

    Google Scholar 

  21. Mitten S (1977) The Cambridge encyclopædia of astronomy. Trewin Copplestone, London, p 392

    Google Scholar 

  22. Mizutani U, Massalski TB, McGiness JE, Corry PM (1976) Low temperature specific heat anomalies in melanins and tumor melanosomes. Nature 259:505–507

    Google Scholar 

  23. Orò J (1961) Comets and the formation of biochemical compounds on the primitive earth. Nature 190:389–390

    Google Scholar 

  24. Orò J, Mills T (1989) Chemical evolution of primitive solar system bodies. Adv Space Res 9:105–120

    Google Scholar 

  25. Orò J, Miller SL, Lazcano A (1990a) The origin and early evolution of life on Earth. Annu Rev Earth Planet Sci 18: 317–356

    Google Scholar 

  26. Orò J, Squyres SW, Reynolds RT, Mills TM (1990b) Europa: prospects for an ocean and exobiological implications. NASA Spec Publ (in press)

  27. Pasteur L (1860) Researches on the molecular asymmetry of natural organic products. Alembic Club Reprint, no. 14, London

  28. Ponnamperuma C, Molten P (1973) Prospect of life on Jupiter. Space Life Sciences 4:32–44

    Google Scholar 

  29. Randjbar-Daemi S, Salam A, Strathdee J (1990) Chern-Simons superconductivity at finite temperature. Nucl Phys B340:403–447

    Google Scholar 

  30. Ringwald A (1990). High energy breakdown of perturbation theory in the electroweak instanton sector. Nucl Phys B330: 1–18

    Google Scholar 

  31. Sakita B (1985) Quantum theory of many-variable systems and fields. World Scientific, Singapore

    Google Scholar 

  32. Sanchez R, Ferris J, Orgel LE (1966) Conditions for purine synthesis: did prebiotic synthesis occur at low temperatures? Science 153:72–73

    Google Scholar 

  33. Soderblom LA, Kieffer SW, Beckes TL, Brown RH, Cook AF, Hansen CJ, Johnson TV, Kirk RL, Schoemaker EM (1990) Triton's geyser-like plumes: discovery and basic characterization. Science 250:410–415

    Google Scholar 

  34. Tranter GE, MacDermott AJ (1989) Electroweak bioenantioselection. Croatica Chem Acta 62(2A):165–187

    Google Scholar 

  35. Walker DC (1979) Origins of optical activity in nature. Elsevier, New York, p vii

    Google Scholar 

  36. Wyckoff RWG (1966) Crystal structures, vol 5, ed. 2. Interscience, London 5, pp 725–727

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Salam, A. The role of chirality in the origin of life. J Mol Evol 33, 105–113 (1991). https://doi.org/10.1007/BF02193624

Download citation

Key words

  • Prebiotic chirality
  • Origin of life
  • Condensation