Skip to main content
Log in

A model of canopy irradiance in relation to changing leaf area in a phytotron-grown snap bean (Phaseolus vulgaris L.) Crop

  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Simple exponential decay models were used to describe the variation in irradiance profiles within a snap bean (Phaseolus vulgaris L.) canopy over a 33-day period of canopy development. The extinction coefficients of these models were varied over time as a function of changing canopy leaf area; nonlinear least-squares procedures were used to estimate parameter values. The resultant model response surfaces depict the changes in canopy irradiance that accompany canopy maturation and illustrate the dynamic nature of canopy closure. A criterion index is defined to aid in assessing the applicability of these models for use in whole-plant simulation models, and an evaluation of these models is given based on this index, their predictive accuracy, and the utility for use within varying modeling frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACOCK, B., CHARLES-EDWARDS, D. A., FITTER, D. J., HAND, D. W., LUDWIG, L. J., WARREN WILSON, J. and WITHERS, A. C. (1978): The contribution of leaves from different levels within a tomato crop to canopy net photosynthesis: an experimental examination of two canopy models. J. Exper. Bot., 29: 815–827.

    Google Scholar 

  • CATHEY, H. M. and CAMPBELL, L. E. (1980): Light and lighting systems for horticultural plants. Hort. Rev., 2: 491–537.

    Google Scholar 

  • CUNNINGHAM, G. L., BALDING, F. R. and SYVERTSEN, J. P. (1974): A net CO2 exchange model for C4-grasses. Photosynthetica, 8: 28–33.

    Google Scholar 

  • DONALD, C. M. (1961): Competition for light in crops and pastures. In: Mechanisms in Biological Competition, Symp. Soc. Exp. Biol., 15: 282–313.

    Google Scholar 

  • DOWNS, R. J. and BONAMINIO, V. P. (1976): Phytotron Procedural Manual for Controlled-Environment Research at the Southeastern Plant Environment Laboratories. North Carolina Agricultural Experiment Station, Tech. Bull. No. 244. N.C. State University, Raleigh, NC.

    Google Scholar 

  • DRAPER, N. R. and SMITH, H. (1966): Applied Regression Analysis. Wiley and Sons, New York. 407 p.

    Google Scholar 

  • GAASTRA, P. (1959): Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance. Meded. Landbouwhogesch., Wageningen, 59 (13): 1–68.

    Google Scholar 

  • HELWIG, J. T. and COUNCIL, K. A. (1979): The SAS Users Guide (1979 Ed.). SAS Institute, Inc., Raleigh, N.C. USA.

    Google Scholar 

  • HESKETH, J. D., LANCE, H. C., JONES, J. W., McKINION, J. M., BAKER, D. N., THOMPSON, A. C. and COLWICK, R. F. (1975): The role of phytotrons in constructing plant growth models. In: Phytotronics in Agricultural and Horticultural Research, Phytotronics III, P. Chouard and N. de Bilderling (eds.), Gauthier-Villars, Paris, 117–129.

    Google Scholar 

  • HESKETH, J. D. (1980): Predicting canopy photosynthesis from gas exchange studies in controlled environments. In: Predicting Photosynthesis for Ecosystem Models, J. E. Hesketh and J. W. Jones (eds.). CRC Press, Boca Raton, Fla., 38–50.

    Google Scholar 

  • HODGES, T., KANEMASU, E. T. and TEARE, I. D. (1979): Modeling dry matter accumulation and yield of grain sorghum. Can. J. Plant Sci. 59: 803–818.

    Google Scholar 

  • JONES, J. W., BARFIELD, C. S., BOOTE, K. J., SMERAGE, G. H. and MANGOLD, J. (1982): Photosynthetic recovery of peanuts to defoliation at various growth stages. Crop Sci., 22: 741–746.

    Google Scholar 

  • KING, R. W. and EVANS, L. T. (1967): Photosynthesis in artificial communities of wheat, lucerne, and subterranean clover plants. Aust. J. Biol. Sci., 20: 623–635.

    Google Scholar 

  • KIRA, T. (1975): Primary production of forests. In: Biosynthesis and Productivity in Different Environments, J. P. Cooper (ed.). Cambridge University Press, London, 5–40.

    Google Scholar 

  • LEMEUR, R. and BLAD, B. L. (1974): A critical review of light models for estimating the shortwave radiation regime of plant canopies. Agric. Meteorol., 14: 255–286.

    Google Scholar 

  • LUDWIG, L. J., SAEKI, T. and EVANS, L. T. (1965): Photosynthesis in artificial communities of cotton plants in relation to leaf area. I. Experiments with progressive defoliation of mature plants. Aust. J. Biol. Sci., 18: 1103–1109.

    Google Scholar 

  • McCREE, K. J. (1979): Radiation. In: Controlled Environment Guidelines for Plant Research, T. W. Tibbitts and T. T. Kozlowski (eds.). Academic Press, New York, 11–28.

    Google Scholar 

  • McCREE, K. J. (1981): Photosynthetically active radiation. In: Physiological Plant Ecology I. Responses to the Physical Environment, O. L. Lange, P. S. Nobel, C. B. Osmond and H. Ziegler (eds.). Springer-Verlag, New York, 41–55.

    Google Scholar 

  • MONSI, M. and SAEKI, T. (1953): Ueber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung feur die Stoffproduktion. Jap. J. Bot., 14: 22–52.

    Google Scholar 

  • MONTEITH, J. L. (1965): Light distribution and photosynthesis in field crops. Ann. Bot., 29: 17–37.

    Google Scholar 

  • MONTEITH, J. L. (1973): Principles of Environmental Physics. Edward Arnold, London, 241 p.

    Google Scholar 

  • NORMAN, J. (1980): Interfacing leaf and canopy light interception models. In: Predicting Photosynthesis for Ecosystem Models, J. D. Hesketh and J. W. Jones (eds.), CRC Press, Boca Raton, Fla., 49–68.

    Google Scholar 

  • PATEFIELD, W. M. and AUSTIN, R. B. (1971): A model for the simulation of the growth ofBeta vulgaris L. Ann. Bot., 35: 1227–1250.

    Google Scholar 

  • ROSS, J. (1977): Radiation conditions in the plant stand. In: Biophysikalische Analyse Pflanzlicher Systeme, K. Unger (ed.). Gustav Fischer Verlag, Jena, 115–119.

    Google Scholar 

  • SAEKI, T. (1960): Interrelationships between leaf amount, light distribution and total photosynthesis in a plant community. Bot. Mag. (Tokyo), 73: 55–63.

    Google Scholar 

  • SAUGIER, B. (1976): Sunflower. In: Vegetation and the Atmosphere, Vol. 2, J. L. Monteith (ed.), Academic Press, New York, 87–120.

    Google Scholar 

  • TAKEDA, T., YAJIMA, M., AOKI, M., HAKOYAMA, S., SAITO, H. and ONO, H. (1976): Chamber method for estimating the primary productivity of a rice plant population. Proc. Crop. Soc. (Japan), 45: 139–149.

    Google Scholar 

  • VERHAGEN, A. M. W., WILSON, J. H. and BRITTEN, E. J. (1963): Plant production in relation to foliage illumination. Ann. Bot., 27: 627–640.

    Google Scholar 

  • WANN, M., RAPER, C. D. and LUCAS, H. L. (1978): A dynamic model for plant growth: a simulation of dry matter accumulation for tobacco. Photosynthetica, 12: 121–136.

    Google Scholar 

  • WOLEDGE, J. and LEAFE, E. L. (1976): Single leaf and canopy photosynthesis in a ryegrass sward. Ann. Bot., 40: 773–783.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieth, J.H., Reynolds, J.F. A model of canopy irradiance in relation to changing leaf area in a phytotron-grown snap bean (Phaseolus vulgaris L.) Crop. Int J Biometeorol 28, 61–71 (1984). https://doi.org/10.1007/BF02193516

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02193516

Keywords

Navigation