Pharmaceutisch weekblad

, Volume 3, Issue 1, pp 800–809 | Cite as

Photochemical activity of 7-nitro-1,4-benzodiazepines

Formation of singlet molecular oxygen, isolation and identification of decomposition products
  • P. J. G. Cornelissen
  • G. M. J. Beijersbergen Van Henegouwen
Original Articles
  • 32 Downloads

Abstract

The photochemical activity of nitrazepam, clonazepam and flunitrazepam has been investigated. These closely structurally related compounds decompose photochemically in an oxygen-poor medium, resulting in photoreductive dimerisation and photoreduction of the nitro-group to successively the nitroso, the hydroxylamino and finally the amino analogue of the nitro-compound. The photoreductive dimerisation compound is a result of a coupling reaction between the respective nitroso and hydroxylamino derivatives.

In an oxygen-rich medium, however, the 7-nitro-1,4-benzodiazepines are relatively photostable. It appears that the quenching of excited clonazepam and nitrazepam leads exclusively to the formation of singlet molecular oxygen, while in the case of flunitrazepam, beside singlet molecular oxygen, also another reactive oxygen-dependent species is formed.

In addition the photochemical activity of methylnitrazepam, methylclonazepam and desmethylflunitrazepam has been investigated. It appears that a relationship exists between the 7-nitro group in the 1,4-benzodiazepine nucleus and the photochemical behaviour.

Keywords

Methylene Blue Clonazepam Nitroso Flunitrazepam Nitrazepam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barltrop, J. A., andN. J. Bunce (1968)J. Chem. Soc., C1467–1474.Google Scholar
  2. Beijersbergen Van Henegouwen, G. M. J. (1979)Trav. Soc. Pharm. Montpellier 39, 149–175.Google Scholar
  3. Beijersbergen Van Henegouwen, G. M. J., G. C. Kruse andK. W. Gerritsma (1976)Pharm. Weekblad 111, 197–203.Google Scholar
  4. Bland, J. (1976)J. Chem. Educ. 53, 274–279.CrossRefGoogle Scholar
  5. Cornelissen, P. J. G. (1980) Ph. D. thesis, Leiden.Google Scholar
  6. Cornelissen, P. J. G., andG. M. J. Beijersbergen Van Henegouwen (1979)Photochem. Photobiol. 30, 337–342.CrossRefGoogle Scholar
  7. Cornelissen, P. J. G., G. M. J. Beijersbergen Van Henegouwen andK. W. Gerritsma (1979)Intern. J. Pharm. 3, 205–220.CrossRefGoogle Scholar
  8. Cornelissen, P. J. G., G. M. J. Beijersbergen Van Henegouwen andG. R. Mohn (1980)Photochem. Photobiol. 32, 653–659;Ibidem (1981) in press.CrossRefPubMedGoogle Scholar
  9. Davidson, R. S., andK. R. Trethewey (1976)J. Am. Chem. Soc. 98, 4008–4009;Ibidem (1977)J. Chem. Soc. Perkin II, 169–173.CrossRefGoogle Scholar
  10. Döpp, D. O. (1975)Topics in Current Chemistry 55, 51–85.Google Scholar
  11. Foote, C. S. (1968)Acc. Chem. Res. 1, 104–110;Ibidem (1976) In:Free Radicals in Biology (Pryor, W. A., Ed.) Vol. 11. Academic Press, New York, 85–113;Ibidem (1978) In:Singlet Oxygen. Reactions with organic compounds & polymers (Ranby, B., andJ. F. Rabek, Eds.) John Wiley & Sons Ltd., New York, 135–146.CrossRefGoogle Scholar
  12. Foote, C. S., andR. W. Denny (1971)J. Am. Chem. Soc. 93, 5168–5171.CrossRefGoogle Scholar
  13. Gollnick, K. (1968)Adv. Photochem. 6, 1–122.CrossRefGoogle Scholar
  14. Higgens, R., C. S. Foote andH. Cheng (1968)Adv. Chem. Ser. 77, 102–117.CrossRefGoogle Scholar
  15. Magnus, I. A. (1976)Dermatological photobiology. Blackwell, London.Google Scholar
  16. Mathews-Roth, M. M., M. A. Pathak, T. B. Fitzpatrick, L. H. Harber andE. H. Kass (1977)Arch. Dermatol. 113, 1229–1232.CrossRefPubMedGoogle Scholar
  17. Merkel, P. B., R. Nilsson andD. R. Kearns (1972)J. Am. Chem. Soc. 94, 1030–1031.CrossRefGoogle Scholar
  18. Mol, N. J. De, andG. M. J. Beijersbergen Van Henegouwen (1979)Photochem. Photobiol. 30, 331–335.CrossRefGoogle Scholar
  19. Mol, N. J. De, G. M. J. Beijersbergen Van Henegouwen andK. W. Gerritsma (1979)Photochem. Photobiol. 29, 7–12.CrossRefGoogle Scholar
  20. Spikes, J. D., andB. W. Glad (1964)Photochem. Photobiol. 3, 471–487.CrossRefGoogle Scholar
  21. Rinkus, S. J., andM. S. Legator (1979)Cancer Res. 39, 3289–3318.PubMedGoogle Scholar
  22. Roth, H. J., andM. Adomeit (1969)Tetrahedron Letters 37, 3201–3204;Ibidem (1973)Arch. Pharm. (Paris) 306, 889–897.CrossRefGoogle Scholar
  23. Russell, G. A., andE. J. Geels (1965)J. Am. Chem. Soc. 87, 122–123.CrossRefGoogle Scholar
  24. Sternbach, L. H., R. Ian Fryer, O. Keller, W. Metlesics, G. Sach andN. Steiger (1963)J. Med. Chem. 19, 1378–1381.Google Scholar
  25. Turro, N. J., D. M. Pond andF. D. Lewis (1970)Annual survey of photochemistry, Vol. 2. John Wiley & Sons Ltd., New York, 117–118.Google Scholar
  26. Walser, A., G. Zenchoff andR. Ian Fryer (1970)J. Med. Chem. 19, 1378–1381.CrossRefGoogle Scholar
  27. Wendt, G. (1976) In:Bisherige Erfahrungen mit Rohypnol (Flunitrazepam) in der Anaesthesiologie und Intensivtherapie (Hügin, W., G. Hossli andM. Gemperle, Eds.). Roche Editiones, Basle, 27–38.Google Scholar

Copyright information

© Bohn, Scheltema & Holkema 1981

Authors and Affiliations

  • P. J. G. Cornelissen
    • 1
  • G. M. J. Beijersbergen Van Henegouwen
    • 1
  1. 1.Department of Pharmacochemistry, Subfaculty of PharmacyState University of Leiden, Gorlaeus LaboratoriaRA LeidenThe Netherlands

Personalised recommendations