Advertisement

Impulsive control systems without commutativity assumptions

  • A. BressanJr.
  • F. Rampazzo
Contributed Papers

Abstract

This paper is concerned with optimal control problems for an impulsive system of the form
$$\dot x(t) = f(t, x, u) + \sum\limits_{i = 1}^m {g_i } (t, x, u)\dot u_i ,u(t) \in U,$$
where the measurable controlu(·) is possibly discontinuous, so that the trajectories of the system must be interpreted in a generalized sense. We study in particular the case where the vector fieldsg i do not commute. By integrating the distribution generated by all the iterated Lie brackets of the vector fieldsg i , we first construct a local factorizationA1×A2 of the state space. If (x1,x2) are coordinates onA1×A2, we derive from (1) a quotient control system for the single state variablex1, withu, x2 both playing the role of controls. A density result is proved, which clarifies the relationship between the original system (1) and the quotient system. Since the quotient system turns out to be commutative, previous results valid for commutative systems can be applied, yielding existence and necessary conditions for optimal trajectories. In the final sections, two examples of impulsive systems and an application to a mechanical problem are given.

Key Words

Lie brackets local integral manifolds optimal impulsive controls 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bressan, A., Jr., andRampazzo, F.,On Differential Systems with Vector-Valued Impulsive Controls, Bollettino dell'Unione Matematica Italiana, Series B, Vol. 3, pp. 641–656, 1988.Google Scholar
  2. 2.
    Rampazzo, F.,Optimal Impulsive Controls with a Constraint on the Total Variation, New Trends in Systems Theory, Edited by G. Conte, A. M. Perdon, and B. F. Wyman, Birkhauser, Boston, Massachussets, pp. 606–613, 1991.Google Scholar
  3. 3.
    Dalmaso, G., andRampazzo, F.,On Systems of Ordinary Differential Equations with Measures as Controls, Differential and Integral Equations, Vol. 4, pp. 739–765, 1991.Google Scholar
  4. 4.
    Sussmann, H. J.,On the Gap between Deterministic and Stochastic Ordinary Differential Equations, Annals of Probability, Vol. 6, pp. 17–41, 1978.Google Scholar
  5. 5.
    Bressan, A., Jr.,On Differential Systems with Impulsive Controls. Rendiconti del Seminario Matematico dell' Università di Padova, Vol. 78, pp. 227–236, 1987.Google Scholar
  6. 6.
    Bressan, A., Jr., andRampazzo, F.,Impulsive Control Systems with Commutative Vector Fields, Journal of Optimization Theory and Applications, Vol. 71, pp. 67–83, 1991.Google Scholar
  7. 7.
    Rampazzo, F. Some Remarks on the Use of Constraints as Controls in Rational Mechanics, Rendiconti del Seminario Matematico dell' Università e Politecnico di Torino, Vol. 48, pp. 367–382, 1990.Google Scholar
  8. 8.
    Rishel, R. W.,An Extended Pontryagin Maximum Principle for Control Systems Whose Control Laws Contain Measures, SIAM Journal on Control, Series A, Vol. 3, pp. 191–205, 1965.Google Scholar
  9. 9.
    Schmaedeke, W. W.,Optimal Control Theory for Nonlinear Differential Equations Containing Measures, SIAM Journal on Control, Series A, Vol. 3, pp. 231–280, 1965.Google Scholar
  10. 10.
    Vinter, R. B., andPereira, F. M. F. L.,A Maximum Principle for Optimal Processes with Discontinuous Trajectories, SIAM Journal on Control and Optimization, Vol. 26, pp. 205–229, 1988.Google Scholar
  11. 11.
    Bressan, A.,Hyperimpulsive Motions and Controllizable Coordinates for Lagrangian Systems, Atti della Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, Series 8, Vol. 19, pp. 197–246, 1989.Google Scholar
  12. 12.
    Bressan, A. On Some Control Problems Concerning the Ski and the Swing, Atti della Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, Series 9, Vol. 1, pp. 149–196, 1991.Google Scholar
  13. 13.
    Bressan, A.,On Some Recent Results in Control Theory and Their Applications to Lagrangian Systems, Atti della Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Mathematiche e Naturali (to appear).Google Scholar
  14. 14.
    Bressan, A.,On the Applications of Control Theory to Certain Problems for Lagrangian Systems and Hyperimpulsive Motions for These, Parts 1 and 2, Atti della Accademia Nazionale dei Lincei, Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali, Vol. 82, pp. 91–118, 1988.Google Scholar
  15. 15.
    Rampazzo, F.,On Lagrangian Systems with Some Coordinates as Controls, Atti della Accademia Nazionale dei Lincei, Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali, Vol. 82, pp. 685–695, 1988.Google Scholar
  16. 16.
    Rampazzo, F.,On The Riemannian Structure of a Lagrangian System and the Problem of Adding Time-Dependent Constraints as Controls, European Journal of Mechanics, A/Solids, Vol. 10, pp. 405–431, 1991.Google Scholar
  17. 17.
    Haines, G. W., andHermes, H.,Nonlinear Controllability via Lie Theory. SIAM Journal on Control, Vol. 8, pp. 450–460, 1970.Google Scholar
  18. 18.
    Aubin, J. P., andCellina, A.,Differential Inclusions, Springer, Berlin, Germany, 1984.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. BressanJr.
    • 1
  • F. Rampazzo
    • 2
  1. 1.Scuola Internazionale Superiore di Studi AvanzatiTriesteItaly
  2. 2.Dipartimento di Matematica Pura e ApplicataUniversità di PadovaPadovaItaly

Personalised recommendations