Journal of Biomolecular NMR

, Volume 2, Issue 6, pp 619–629 | Cite as

Processing of multi-dimensional NMR data with the new software PROSA

  • Peter Güntert
  • Volker Dötsch
  • Gerhard Wider
  • Kurt Wüthrich
Article

Summary

The new program PROSA is an efficient implementation of the common data-processing steps for multi-dimensional NMR spectra. PROSA performs linear prediction, digital filtering, Fourier transformation, automatic phase correction, and baseline correction. High efficiency is achieved by avoiding disk storage of intermediate data and by the absence of any graphics display, which enables calculation in the batch mode and facilitates porting PROSA on a variety of different computer systems; including supercomputers. Furthermore, all time-consuming routines are completely vectorized. The elimination of a graphics display was made possible by the use of a new, reliable automatic phase-correction routine. CPU times for complete processing of a typical heteronuclear three-dimensional NMR data set of a protein vary between less than 1 min on a NEC SX3 supercomputer and 40 min on a Sun-4 computer system.

Keywords

Data processing Fourier transformation Linear prediction Phase correction Baseline correction 

Abbreviations

1D

one-dimensional

2D

two-dimensional

3D

three-dimensional

4D

four-dimensional

NOESY

nuclear Overhauser enhancement spectroscopy

TOCSY

total correlation spectroscopy

TPPI

time-proportional phase incrementation

u-13C

uniformly13C-labeled

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barkhuijsen, H., De Beer, R. and van Ormondt, D. (1987)J. Magn. Reson.,73, 553–557.Google Scholar
  2. Bax, A., Clore, G.M. and Gronenborn, A.M. (1990)J. Magn. Reson.,88, 425–431.Google Scholar
  3. Bax, A., Ikura, M., Kay, L.E. and Zhu, G. (1991)J. Magn. Reson.,91, 174–178.Google Scholar
  4. Brown, D.E., Campbell, T.W. and Moore, R.N. (1989)J. Magn. Reson.,85, 15–23.Google Scholar
  5. Bruker Analytische Messtechnik GmbH (1991)UXNMR. Messen und Verarbeiten von NMR Daten, Rheinstetten, Germany.Google Scholar
  6. Cieslar, C., Clore, G.M. and Gronenborn, A.M. (1988)J. Magn. Reson.,79, 154–157.Google Scholar
  7. Clore, G.M. and Gronenborn, A.M. (1991)Prog. NMR Spectrosc.,23, 43–92.Google Scholar
  8. Clore, G.M., Kay, L.E., Bax, A. and Gronenborn, A.M. (1991)Biochemistry,30, 12–18.PubMedGoogle Scholar
  9. DeMarco, A. and Wüthrich, K. (1976)J. Magn. Reson.,24, 201–204.Google Scholar
  10. Dietrich, W., Rüdel, C.H. and Neumann, M. (1991)J. Magn. Reson.,91, 1–11.Google Scholar
  11. Eccles, C., Güntert, P., Billeter, M. and Wüthrich, K. (1991)J. Biomol. NMR,1, 111–130.PubMedGoogle Scholar
  12. Ernst, R. R. (1969)J. Magn. Reson.,1, 7–26.Google Scholar
  13. Ernst, R. R., Bodenhausen, G. and Wokaun, A. (1987)Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford.Google Scholar
  14. Fesik, S.W. and Zuiderweg, E.R.P. (1990)Quart. Rev. Biophys.,23, 97–131.Google Scholar
  15. Gladden, L.F. and Elliott, S.R. (1986)J. Magn. Reson.,68 383–388.Google Scholar
  16. Güntert, P. and Wüthrich, K. (1992)J. Magn. Reson.,96, 403–407.Google Scholar
  17. Hare Research Inc. (1991)FELIX User Documentation. Version 2.0, Woodinville, WA, U.S.A.Google Scholar
  18. Heuer, A. (1991)J. Magn. Reson.,91, 241–253.Google Scholar
  19. Hoffman, R.E., Delaglio, F. and Levy, G.C. (1992)J. Magn. Reson.,98, 231–237.Google Scholar
  20. Kay, L.E., Ikura, M., Tschudin, R. and Bax, A. (1990)J. Magn. Reson.,89, 496–514.Google Scholar
  21. Kumaresan, R. and Tufts, D.W. (1982)IEEE Trans. Acoust. Speech Signal Process.,30, 833–840.Google Scholar
  22. Marion, D. and Bax, A. (1989)J. Magn. Reson.,83, 205–211.Google Scholar
  23. Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989)J. Magn. Reson.,85, 393–399.Google Scholar
  24. Marshall, A.G. and Roe, D.C. (1978)Anal. Chem.,50, 756–763.Google Scholar
  25. Neff, B.L., Ackerman, J.L. and Waugh, J.S. (1977)J. Magn. Reson.,25, 335–340.Google Scholar
  26. Nelson, S.J. and Brown, T.R. (1989)J. Magn. Reson.,84, 95–109.Google Scholar
  27. Olejniczak, E.T. and Eaton, H.L. (1990)J. Magn. Reson.,87, 628–632.Google Scholar
  28. Otting, G., Widmer, H., Wagner, G. and Wüthrich, K. (1986)J. Magn. Reson.,66, 187–193.Google Scholar
  29. Pearson, G.A. (1977)J. Magn. Reson.,27, 265–272.Google Scholar
  30. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986)Numerical Recipes: The Art of Scientific Computing, Cambridge University, Press, Cambridge.Google Scholar
  31. Stephenson, D.S. (1988)Prog. NMR Spectrosc.,20, 515–626.Google Scholar
  32. TRIPOS Associates, Inc. (1992) SYBYL/NMR TRIAD, St. Louis, MG, U.S.A.Google Scholar
  33. Wüthrich, K. (1986)NMR of Proteins and Nucleic Acids, Wiley, New York.Google Scholar
  34. Wüthrich, K. (1990)J. Biol. Chem.,265, 22059–22062.PubMedGoogle Scholar
  35. Zhu, G. and Bax, A. (1990)J. Magn. Reson.,90, 405–410.Google Scholar
  36. Zuiderweg, E.R.P., Petros, A.M., Fesik, S.W. and Olejniczak, E.T. (1991)J. Am. Chem. Soc.,113, 370–372.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1992

Authors and Affiliations

  • Peter Güntert
    • 1
  • Volker Dötsch
    • 1
  • Gerhard Wider
    • 1
  • Kurt Wüthrich
    • 1
  1. 1.Eidgenössische Technische Hochschule-HönggerbergInstitut für Molekularbiologie und BiophysikZürichSwitzerland

Personalised recommendations