International Journal of Biometeorology

, Volume 31, Issue 1, pp 45–55 | Cite as

On the effect of soil wetness on thermal stress

  • Y. Ookouchi
  • M. Segal
  • R. A. Pielke
  • Y. Mahrer


A coupled atmosphere-soil model was applied in order to evaluate the impact of soil wetness on human stress in the absence of horizontal gradients in moisture. The results are illustrated and discussed with consideration to various combinations of wind speed and lower level atmospheric moisture during daylight hours with summer weather conditions. A thermal index composed of the air temperature and wet-bulb temperature does not show major changes as a function of variation of soil mosture. When wind speed and solar radiation are also considered, in a more detailed thermal index, relatively wet soil is associated with the optimal thermal comfort.


Wind Speed Soil Wetness Plant Physiology Solar Radiation Weather Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ATWATER, M. A. and BROWN, P. S. (1974): Numerical calculation of the latitudinal variation of solar radiation for an atmosphere of varying opacity.J. Appl. Meteor., 13: 289–297.Google Scholar
  2. BALDWIN, J. L. (1973):Climates of the United States. Environmental Data Servic, NOAA, U.S. Department of Commerce, Washington, D.C., 113 pp.Google Scholar
  3. BUSINGER, J. A., WYNGAARD, J. C., IZUMI, Y. and BRADLEY, F. F. (1971): Flux-profile relationships in the atmospheric surface layer.J. Atmos. Sci., 28: 181–189.Google Scholar
  4. CARLSON, T. N. and BOLAND, F. E. (1978): Analysis of urban-rural canopy using a surface heat flux/temperature model.J. Appl. Meteor., 17: 998–1013.Google Scholar
  5. DE VRIES, D. A. (1963): Thermal properties of soils. inPhysics of Plant Environment, W. R. van Wijk (Ed.), John Wiley and Sons, New York: 210–235.Google Scholar
  6. GIVONI, B. (1974): Biometeorological indices.Progress in Biometeorology, S. W. Tromp (Ed.), Swets and Zeitlinger, Amsterdam, 138–145.Google Scholar
  7. HENDRICK, R. L. (1959): An outdoor weather-comfort index for the summer season in Hartford, Connecticut.Bull. Amer. Meteor., 40: 620–623.Google Scholar
  8. IDSO, S. R., JACKSON, B., KIMBALL, B., and NAKAYAMA, F. (1975): The dependence of bare soil albedo on soil water content.J. Appl. Meteor., 14, 109–113.Google Scholar
  9. JAUREGUI, E. and SOTO, C. (1967): Wet bulb temperture and discomfort index, areal distribution in Mexico.Int. J. Biometeor., 11: 21–28.Google Scholar
  10. KLEIN, W. H. (1948): Calculation of solar radiation and solar heat load on man.J. Meteor., 5: 119–129.Google Scholar
  11. LANDSBERG, H. E. (1972): The assessment of human bioclimate: A limited review of physical parameters. Techn. Note No. 123, W.M.O., Geneva, Switzerland, 36 pp.Google Scholar
  12. MAHRER, Y. and PIELKE, R. A. (1977): A numerical study of the airflow over irregular terrain.Beit. Phys. Atmos., 50: 98–113.Google Scholar
  13. MCCUMBER, M. C. and PIELKE, R. A. (1981): Simulation of the effect of surface fluxes of heat and moisture in mesoscale numerical models.J. Geophys. Res., 86: 9929–9938.Google Scholar
  14. MCNIDER, R. T. and PIELKE, R. A. (1981): Diurnal boundary layer development over sloping terrain.J. Atmos. Sci., 28: 2198–2212.Google Scholar
  15. MUNN, R. E. (1970):Biometeorological Methods. Academic Press, 336 pp.Google Scholar
  16. OBRIEN, J. J. (1970): A note on the vertical structure of the eddy exchange coefficient in planetary boundary layer.J. Atmos. Sci., 27: 1213–1215.Google Scholar
  17. PIELKE, R. A. (1974): A three-dimensional numerical model of the sea breeze over south Florida.Mon. Wea. Rev., 106: 1568–1589.Google Scholar
  18. RUBINSTEIN, M., GANOR, E., and OHRING, G. (1980): Areal distribution of discomfort index in Israel.Int. J. Biometeor., 24: 315–322.Google Scholar
  19. SASAMORI, T. (1970): A numerical study of atmospheric and soil boundary layers.J. Atmos. Sci., 27: 1122–1137.Google Scholar
  20. SASAMORI, T. (1972): A linear harmonic analysis of atmospheric motion with radiative dissipation.J. Meteor. Soc., 50: 505–518.Google Scholar
  21. SEGAL, M. and MAHRER, Y. (1979): Heat load conditions in Israel — A numerical mesoscale model study.Int. J. Biometeor., 23: 279–284.Google Scholar
  22. SEGAL, M. and PIELKE, R. A. (1981): Numerical model simulation of biometeorological heat load conditioins — summer day case study for the Chesapeake Bay Area.J. Appl. Meteor., 20: 735–749.Google Scholar
  23. SOHAR, E., BIRNFIELD, M., and SHAPIRO, Y. (1977): Heat load conditions in various parts of Israel.Harefuah, 92: 548–551.Google Scholar
  24. THOM, E. C. (1959): The discomfort index.Weatherwise, 12: 57–60.Google Scholar
  25. ZHANG, D. L. and ANTHES, R. A. (1982): A high resolution model of the planetary boundary layer — sensitivity tests and comparisons with SESAME-79 data.J. Appl. Meteor., 21: 1594–1609.Google Scholar

Copyright information

© Swets & Zeitlinger 1987

Authors and Affiliations

  • Y. Ookouchi
    • 2
  • M. Segal
    • 1
  • R. A. Pielke
    • 1
  • Y. Mahrer
    • 3
  1. 1.Dept. of Atmospheric ScienceColorado State UniversityFort Collins
  2. 2.Yatsushiro National College of TechnologyYatsushiroJapan
  3. 3.Cooperative Institute for Research in the AtmosphereColorado State UniversityFort Collins

Personalised recommendations