aequationes mathematicae

, Volume 27, Issue 1, pp 163–186 | Cite as

On the transversal distribution and the complete figure in the second order multiple integral problem in the calculus of variations

  • I. M. Snyman
Research Paper
  • 19 Downloads

AMS (1980) subject classification

Primary 49C15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Edelen, D. G. B.,Isovector methods for equations of balance. Sijthoff and Noordhoff, Alpen oan den Rijn-Germantown, MD., 1980.Google Scholar
  2. [2]
    Grässer, H. S. P.,The complete figure for second order multiple integral problems in the calculus of variations. Aequationes Math.14 (1976), 363–386.CrossRefGoogle Scholar
  3. [3]
    Grässer H. S. P. andSnyman I. M.,On a symmetry condition and a geodesic field theory for second order multiple integral variational problems. Tensor N.S.39 (1982), 240–248.Google Scholar
  4. [4]
    Kobayashi, S. andNomizu, K.,Foundations of differential geometry, Vol. 1. Interscience Publishers, New York-London, 1963.Google Scholar
  5. [5]
    Lovelock, D. andRund, H.,Tensors, differential forms and variational principles. Pure and Applied Mathematics. Wiley-Interscience, New York-London-Sydney, 1975.Google Scholar
  6. [6]
    Rund, H.,The canonical theory of second order multiple integrals in the calculus of variations. Tydsk. Natuurwetenskap10 (1970), 228–240.Google Scholar
  7. [7]
    Rund, H.,Transversality and fields of extremals of multiple integral problems in the calculus of variations. Aequationes Math.10 (1974), 236–261.CrossRefGoogle Scholar
  8. [8]
    Rund, H., Unpublished draft manuscript kindly supplied by the author, 1981.Google Scholar
  9. [9]
    Rund, H.,The construction of the complete figure in the calculus of variations of multiple integrals: a direct approach, Quaestiones Math.5. (1982), 187–218.Google Scholar
  10. [10]
    Snyman, I. M.,Transversality and the complete figure in the second order multiple integral problem in the calculus of variations. Ph.D. Thesis, University of South Africa, Pretoria, 1982.Google Scholar

Copyright information

© Birkhäuser Verlag 1984

Authors and Affiliations

  • I. M. Snyman
    • 1
  1. 1.Department of Mathematics and Applied MathematicsUniversity of South AfricaPretoriaSouth Africa

Personalised recommendations