International Journal of Primatology

, Volume 14, Issue 2, pp 207–227 | Cite as

Physical and chemical properties of fruit and seeds eaten byPithecia andChiropotes in Surinam and Venezuela

  • Warren G. Kinzey
  • Marilyn A. Norconk
Article

Abstract

Pithecia pithecia andChiropotes satanas are seed predators that eat fruits with hard pericarps. We measured resistance to puncturing and crushing of fruit and seeds eaten by these two pitheciins at two localities: in evergreen rain forest at Raleighvallen-Voltzberg, Surinam, and in tropical dry/transitional moist forest on islands in Guri Lake, Venezuela. Average measurements of pericarp hardness were similar at both sites for fruit eaten byChiropotes, but a higher maximum value was obtained at the rainforest site.Chiropotes andPithecia both ate fruits that had harder pericarps than did fruits eaten byAteles paniscus, but crushing resistances of seeds eaten were lower than values forAteles. Thus, both pitheciins selected fruits with hard pericarps and soft seeds, although there were notable intergeneric differences in hardness of fruit ingested. When fruit became scarce,Pithecia ate more flowers, whileChiropotes continued to eat fruits with hard seed coverings. Chemical analysis of species of seeds eaten byPithecia suggests that they avoided seeds with extremely high tannin levels, though they tolerated moderate tannin levels in combination with high levels of lipids. We propose that sclerocarpic harvesting (the preparation and ingestion of fruit with a hard pericarp) allows pitheciin monkeys to obtain nutritious seeds, with reduced tannins, that are softer than those ingested by other frugivores.

Key Words

Chiropotes Pithecia food choice fruit hardness diet sclerocarpic harvesting seed chemistry seed predation tannin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Association of Official Analytical Chemists (AOAC) (1984). Fal (crude) or ether extract in animal feeds: Direct method. In Williams, S. (ed.),Official Methods of Analysis of the Association of Official Analytical Chemists, Association of Official Analytical Chemists, Inc., Arlington, VA, pp. 159–160.Google Scholar
  2. Ayres, M. M. (1981). Observações sobre a ecologia e o comportamento dos cuxiús (Chiropotes albinasus e Chiropotes satanas, Cebidae: Primates). Unpublished Master of Science Thesis, Instituto Nacional de Pesquisas da Amazônia e Fundação Universidade do Amazonas, Manaus.Google Scholar
  3. Ayres, J. M. (1986).Uakaris and Amazonian Flooded Forest, Ph.D. thesis, University of Cambridge, Cambridge.Google Scholar
  4. Ayres, J. M. (1989). Comparative feeding ecology of the uakari and bearded saki,Cacajao andChiropotes.J. Hum. Evol. 18: 697–716.Google Scholar
  5. Ayres, J. M., and Nessimian, J. L. (1982). Evidence for insectivory inChiropotes satanas.Primates 23: 458–459.Google Scholar
  6. Bate-Smith, E. C. (1975). Phytochemistry of proanthocyanidins.Phytochem. 14: 1107–1113.Google Scholar
  7. Bodmer, R. E. (1989). Frugivory in Amazonian Artiodactyla: Evidence for the evolution of the ruminant stomach.J. Zool. Lond. 219: 457–467.Google Scholar
  8. Chivers, D. J., Andrews, P., Preuschoft, H., Bilsborough, A., and Wood, B. A. (1984). Food acquisition and processing in primates: Concluding discussion. In Chivers, D. J., Wood, B. A., and Bilsborough, A. (eds.),Food Acquisition and Processing in Primates, Plenum, New York, pp. 545–556.Google Scholar
  9. Davies, A. G., Bennett, E. L., and Waterman, P. G. (1988). Food selection by two south-east Asian colobine monkeys (Presbytis rubicunda andPresbytis melalophos) in relation to plant chemistry.Biol. J. Linn. Soc. 34: 33–56.Google Scholar
  10. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956). Colorimetric method for determination of sugars and related substances.Anal. Chem. 28: 350–356.Google Scholar
  11. Emmons, L. H. (1990).Neotropical Rainforest Mammals, University of Chicago Press, Chicago.Google Scholar
  12. Harborne, J. B. (1984).Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, Chapman & Hall, New York, p. 107.Google Scholar
  13. Harrison, M. J. S., and Hladik, C. M. (1986). Un primate granivore: le colobe noir dans la forêt du Gabon; potentialité d'evolution du comportement alimentaire.Rev. Ecol. 41: 281–298.Google Scholar
  14. Hiiemäe, K. M., and Kay, R. F. (1978). Evolutionary trends in the dynamics of primate mastication. In Zingeser, M. R. (ed.),Symp. IVth Int. Congr. Primatol., Vol. 3. Craniofacial Biol. Primates, Karger, Basle, pp. 28–64.Google Scholar
  15. Izawa, K. (1993). Soil-eating byAlouatta andAteles.Int. J. Primatol. 14: 229–242.Google Scholar
  16. Janzen, D. H. (1971). Seed predation by animals.Annu. Rev. Ecol. Syst. 2: 465–492.Google Scholar
  17. Kay, R. F. (1984) On the use of anatomical features to infer foraging behavior in extinct primates. In Rodman, P. S., and Cant, J. G. H. (eds.),Adaptations for Foraging in Nonhuman Primates, Columbia University Press, New York, pp. 21–53.Google Scholar
  18. Kiltie, R. A. (1982). Bite force as a basis for niche differentiation between rain forest peccaries (Tayassu tajacu andT. pecari).Biotropica 14: 188–195.Google Scholar
  19. Kinzey, W. G. (1987). Comparative functional morphology of the dentition of bearded saki and spider monkeys.Anat. Rec. 218(1): 72A.Google Scholar
  20. Kinzey, W. G. (1988). Correlates of seed processing and dental morphology inChiropotes.Int. J. Primatol. 8: 43.Google Scholar
  21. Kinzey, W. G. (1992). Dietary and dental adaptations in the Pitheciinae.Am. J. Phys. Anthropol. 88: 499–514.Google Scholar
  22. Kinzey, W. G., and Norconk, M. A. (1988). Dureza como un criterio de selection de frutos por capuchinos del Orinoco y marimondas.Acta Cientif. Venez. 39 (Suppl. 1): 218.Google Scholar
  23. Kinzey, W. G., and Norconk, M. A. (1990). Hardness as a basis of fruit choice in two sympatric primates.Am. J. Phys. Anthropol. 81: 5–15.Google Scholar
  24. Kinzey, W. G., Norconk, M. A., and Alvarez-Cordero, E. (1988). Primate survey of Eastern Bolívar, Venezuela.Primate Conserv. 9: 66–70.Google Scholar
  25. Kinzey, W. G., Norconk, M. A., and Leighton, M. (1990). Preliminary data on physical and chemical properties of fruit eaten byPithecia pithecia.Am. J. Primatol. 20: 204–205.Google Scholar
  26. Leighton, M. (1993). Modeling dietary selectivity by Bornean orangutants: Evidence for integration of multiple criteria in fruit selection.Int. J. Primatol. 14: 257–313.Google Scholar
  27. Marks, D., Glyphis, J., and Leighton, M. (1987). Measurement of protein in tannin-protein precipitates using ninhydrin.J. Sci. Food Agr. 38: 255–261.Google Scholar
  28. Mittermeier, R. A., and van Roosmalen, M. G. M. (1981). Preliminary observations on habitat utilization and diet in eight Surinam monkeys.Folia Primatol. 36: 1–39.Google Scholar
  29. Mittermeier, R. A., Konstant, R., Ginsberg, H., van Roosmalen, M. G. M., and Cordeiro da Silva, E., Jr. (1983). Further evidence of insect consumption in the bearded saki monkeys,Chiropotes satanas satanas.Primates 24: 602–605.Google Scholar
  30. Mole, S., and Waterman, P. G. (1987). A critical analysis of techniques for measuring tannins in ecological studies. I. Techniques for chemically defining tannins.Oecologia 72: 137–147.Google Scholar
  31. Muckenhirn, N. A., Mortensen, S., Vessey, S., Fraser, C. E. O., and Singh, B. (1975). Report on a primate survey in Guyana. Pan American Health Organization, Washington, DC.Google Scholar
  32. Norconk, M. A., and Kinzey, W. G. (1990). Preliminary data on feeding ecology ofPithecia pithecia in Bolívar State, Venezuela.Am. J. Primatol. 19: 215.Google Scholar
  33. Oliveira, J. M. S., Lima, M. G., Bonvincino, C., Ayres, J. M., and Fleagle, J. G. (1985). Preliminary notes on the ecology and behavior of the Guianan saki (Pithecia pithecia, Linnaeus 1766; Cebidae, Primate).Acta Amazon. 15: 249–263.Google Scholar
  34. Rosenberger, A. L. (1992). The evolution of feeding niches in New World monkeys.Am. J. Phys. Anthropol. 88: 525–562.Google Scholar
  35. Rosenberger, A. L., and Kinzey, W. G. (1976). Functional patterns of molar occlusion in platyrrhine primates.Am. J. Phys. Anthropol. 45: 281–298.Google Scholar
  36. Rosenberger, A. L., Setoguchi, T., and Shigehara, N. (1990). The fossil record of callitrichine primates.J. Hum. Evol. 19: 209–236.Google Scholar
  37. Setz, E. Z. F. (1987). Feeding ecology ofPithecia pithecia (Pithecinae, Cebidae) in a forest fragment.Int. J. Primatol. 8: 543.Google Scholar
  38. Strickland, J. D. H., and Parsons, T. R. (1972).A Practical Handbook of Seawater Analysis, Fisheries Board of Canada, Ottawa.Google Scholar
  39. van Roosmalen, M. G. M. (1985). Habitat preferences, diet, feeding strategy and social organization of the black spider monkey (Ateles paniscus paniscus Linnaeus 1758) in Surinam.Acta Amazon. 15(3–4) (Suppl): 1–238.Google Scholar
  40. van Roosmalen, M. G. M., Mittermeier, R. A., and Fleagle, J. G. (1988). Diet of the northern bearded saki (Chiropotes satanas chiropotes): A neotropical seed predator.Am. J. Primatol. 14: 11–35.Google Scholar
  41. Waterman, P. G. (1984). Food acquisition and processing as a function of plant chemistry. In Chivers, D. J., Wood, B. A., and Bilsborough, A. (eds.),Food Acquisition and Processing in Primates, Plenum, New York, pp. 177–211.Google Scholar
  42. Yeager, C. P. (1989). Feeding ecology of the proboscis monkey (Nasalis larvatus).Int. J. Primatol. 10: 497–530.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Warren G. Kinzey
    • 1
  • Marilyn A. Norconk
    • 2
  1. 1.Department of Anthropology, City College and The Graduate CenterCity University of New YorkNew York
  2. 2.Department of AnthropologyKent State UniversityKent

Personalised recommendations