Skip to main content
Log in

A primal-dual interior-point method for linear programming based on a weighted barrier function

  • Contributed Papers
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

One motivation for the standard primal-dual direction used in interior-point methods is that it can be obtained by solving a least-squares problem. In this paper, we propose a primal-dual interior-point method derived through a modified least-squares problem. The direction used is equivalent to the Newton direction for a weighted barrier function method with the weights determined by the current primal-dual iterate. We demonstrate that the Newton direction for the usual, unweighted barrier function method can be derived through a weighted modified least-squares problem. The algorithm requires a polynomial number of iterations. It enjoys quadratic convergence if the optimal vertex is nondegenerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karmarkar, N. K.,A New Polynomial Time Algorithm for Linear Programming, Combinatorica, Vol. 4, pp. 373–395, 1984.

    Google Scholar 

  2. Den Hertog, D., andRoos, D.,A Survey of Search Directions in Interior-Point Methods for Linear Programming, Mathematical Programming, Vol. 52, pp. 481–510, 1991.

    Article  Google Scholar 

  3. McShane, K. A., Superlinearly Convergent\(O(\sqrt n L)\) Iteration Interior-Point Algorithms for Linear Programming and the Monotone Linear Complementarity Problem, SIAM Journal on Optimization, Vol. 4, pp. 247–261, 1994.

    Article  Google Scholar 

  4. Monteiro, R. D. C., andWright, S. J.,A Globally and Superlinearly Convergent Potential Reduction Interior-Point Method for Convex Programming, Technical Report 92-13, Department of Systems and Industrial Engineering, University of Arizona, 1992.

  5. Zhang, Y., andTapia, R. A.,Superlinear and Quadratic Convergence of Primal-Dual Interior-Point Methods for Linear Programming Revisited, Journal of Optimization Theory and Applications, Vol. 73, pp. 229–242, 1992.

    Article  Google Scholar 

  6. Zhang, Y., andTapia, R. A.,A Superlinearly Convergent Polynomial Primal-Dual Interior-Point Algorithm for Linear Programming, SIAM Journal on Optimization, Vol. 3, pp. 118–133, 1993.

    Article  Google Scholar 

  7. Zhang, Y., Tapia, R. A., andDennis, J. E.,On the Superlinear and Quadratic Convergence of Primal-Dual Interior-Point Linear Programming Algorithms, SIAM Journal on Optimization, Vol. 2, pp. 304–324, 1992.

    Article  Google Scholar 

  8. Cheng, Z., andMitchell, J. E.,An Alternative Derivation of the Projective Interior-Point Method for Linear Programming through the Least-Square Approach, Technical Report 208, Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 1993.

  9. Gill, P. E., Murray, W., Saunders, M. A., Tomlin, J. A., andWright, M. H.,On Projected Newton Barrier Methods for Linear Programming and an Equivalence to Karmarkar's Projective Method, Mathematical Programming, Vol. 36, pp. 183–209, 1986.

    Google Scholar 

  10. Fiacco, A. V., andMcCormick, G. P.,Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley, New York, New York, 1968.

    Google Scholar 

  11. Kojima, M., Mizuno, S., andYoshise, A.,A Primal-Dual Interior-Point Method for Linear Programming, Progress in Mathematical Programming, Edited by N. Megiddo, Springer Verlag, Berlin, Germany, pp. 29–47, 1988.

    Google Scholar 

  12. Lustig, I. J., Marsten, R. J., andShanno, D. F.,Computational Experience with a Primal-Dual Interior-Point Method for Linear Programming, Linear Algebra and Its Applications, Vol. 152, pp. 191–222, 1991.

    Article  Google Scholar 

  13. McShane, K. A., Monma, C. L., andShanno, D. F.,An Implementation of a Primal-Dual Interior-Point Method for Linear Programming, ORSA Journal on Computing, Vol. 1, pp. 70–83, 1989.

    Google Scholar 

  14. Mehrotra, S.,On the Implementation of a Primal-Dual Interior-Point Method, SIAM Journal on Optimization, Vol. 2, pp. 575–601, 1992.

    Article  Google Scholar 

  15. Monteiro, R. D. C., andAdler, I.,Interior Path-Following Primal-Dual Algorithms, Part 1: Linear Programming, Mathematical Programming, Vol. 44, pp. 27–41, 1989.

    Article  Google Scholar 

  16. Freund, R. M.,Projective Transformations for Interior-Point Algorithms and a Superlinearly Convergent Algorithm for the w-Center Problem, Mathematical Programming, Vol. 58, pp. 385–414, 1993.

    Article  Google Scholar 

  17. Atkinson, D. S., andVaidya, P. M.,A Scaling Technique for Finding the Weighted Analytic Center of a Polytope, Mathematical Programming, Vol. 57, pp. 163–192, 1992.

    Article  Google Scholar 

  18. Güler, O., andYe, Y.,Convergence Behavior of Interior-Point Algorithms, Mathematical Programming, Vol. 60, pp. 215–228, 1993.

    Article  Google Scholar 

  19. Vanderbei, R. J., Meketon, M. S., andFreedman, B. A.,A Modification of Karmarkar's Linear Programming Algorithm, Algorithmica, Vol. 1, pp. 395–407, 1986.

    Article  Google Scholar 

  20. El-Bakry, A. S., Tapia, R. A., andZhang, Y.,A Study of Indicators for Identifying Zero Variables in Interior-Point Methods, SIAM Review, Vol. 36, pp. 45–72, 1994.

    Article  Google Scholar 

  21. Ye, Y., andKojima, M.,Recovering Optimal Dual Solutions in Karmarkar's Polynomial Algorithm for Linear Programming, Mathematical Programming, Vol. 39, pp. 305–317, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. A. Tapia

The research of the second author was supported in part by ONR Grants N00014-90-J-1714 and N00014-94-1-0391.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Z.Y., Mitchell, J.E. A primal-dual interior-point method for linear programming based on a weighted barrier function. J Optim Theory Appl 87, 301–321 (1995). https://doi.org/10.1007/BF02192566

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02192566

Key Words

Navigation