Advertisement

Controller design to optimize a composite performance measure

  • M. V. Salapaka
  • P. G. Voulgaris
  • M. Dahleh
Contributed Papers

Abstract

This paper studies a mixed objective problem of minimizing a composite measure of thel1, ℋ2, andl-norms together with thel-norm of the step response of the closed loop. This performance index can be used to generate Pareto-optimal solutions with respect to the individual measures. The problem is analyzed for discrete-time, single-input single-output (SISO), linear time-invariant systems. It is shown via Lagrange duality theory that the problem can be reduced to a convex optimization problem with a priori known dimension. In addition, continuity of the unique optimal solution with respect to changes in the coefficients of the linear combination that defines the performance measure is estabilished.

Key Words

Duality theory l1-optimization multiobjective control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doyle, J. C., Glover, K., Khargonekar, P., andFrancis, B. A., State Space Solutions to Standard ℋ2/ℋ-Control Problems, IEEE Transactions on Automatic Control, Vol. 34, pp. 831–847, 1989.Google Scholar
  2. 2.
    Dahleh, M. A., andPearson, J. B.,l 1-Optimal Feedback Controllers for MIMO Discrete-Time Systems, IEEE Transactions on Automatic Control, Vol. 32, pp. 314–322, 1987.Google Scholar
  3. 3.
    Dahleh, M. A., andPearson, J. B.,Minimization of a Regulated Response to a Fixed Input, IEEE Transactions on Automatic Control, Vol. 33, pp. 924–930, 1988.Google Scholar
  4. 4.
    Dahleh, M. A., andDiaz-Bobillo, I. J.,Control of Uncertain Systems: A Linear Programming Approach, Prentice Hall, Englewood Cliffs, New Jersey, 1995.Google Scholar
  5. 5.
    Khargonekar, P. P., andRotea, M. A., Mixed ℋ2/ℋ-Control: A Convex Optimization Approach, IEEE Transactions on Automatic Control, Vol. 36, pp. 824–837, 1991.Google Scholar
  6. 6.
    Doyle, J. C., Zhou, K., andBodenheimer, B.,Optimal Control with Mixed H 2 and H -Performance Objectives, Proceedings of the American Control Conference, Vol. 3, pp. 2065–2070, 1989.Google Scholar
  7. 7.
    Elia, N., Dahleh, M. A., andDiaz-Bobillo, I. J.,Controller Design via Infinite-Dimensional Linear Programming, Proceedings of the American Control Conference, Vol. 3, pp. 2165–2169, 1993.Google Scholar
  8. 8.
    Sznaier, M., Mixedl 1/ℋ-Controllers for SISO Discrete-Time Systems, Proceedings of the Conference on Decision and Control, Vol. 1, pp. 34–38, 1993.Google Scholar
  9. 9.
    Sznaier, M., andBlanchini, F., Mixed ℒ/ℋ-Suboptimal Controllers for SISO Continuous-Time Systems, Proceedings of the Conference on Decision and Control, Vol. 3, pp. 34–38, 1993.Google Scholar
  10. 10.
    Boyd, S. P., andBarratt, C. H.,Linear Controller Design: Limits of Performance, Prentice Hall, Englewood Cliffs, New Jersey, 1991.Google Scholar
  11. 11.
    Voulgaris, P., Optimal ℒ/l 1-Control: The SISO Case, Proceedings of the Conference on Decision and Control, Vol. 4, pp. 3181–3186, 1994.Google Scholar
  12. 12.
    Salapaka, M. V., Dahleh, M., andVoulgaris, P., Mixed Objective Control Synthesis: Optimall 1/ℒ-Control, Proceedings of the American Control Conference, Vol. 2, pp. 1438–1442, 1995.Google Scholar
  13. 13.
    Youla, D. C., Jabr, H. A., andBongiorno, J. J.,Modern Wiener-Hopf Design of Optimal Controllers, Part 1: The Multivariable Case, IEEE Transactions on Automatic Control, Vol. 21, pp. 293–305, 1976.Google Scholar
  14. 14.
    Da Cuhna, N. O., andPolak, E.,Constrained Minimization under Vector-Valued Criteria in Finite-Dimensional Spaces, Journal of Mathematical Analysis and Applications, Vol. 19, pp. 103–124, 1967.Google Scholar
  15. 15.
    Luenberger, D. G.,Optimization by Vector Space Methods, John Wiley and Sons, New York, New York, 1969.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • M. V. Salapaka
    • 1
  • P. G. Voulgaris
    • 2
  • M. Dahleh
    • 1
  1. 1.Mechanical and Environmental Engineering DepartmentUniversity of CaliforniaSanta Barbara
  2. 2.Coordinated Science LaboratoryUniversity of Illinois at Urbana ChampaignUrbana

Personalised recommendations