Necessary conditions for optimality in the identification of elliptic systems with parameter constraints

  • W. H. Yu
Contributed Papers


We consider the problems of dientifying the parametersa ij (x), b i (x), c(x) in a 2nd order, linear, uniformly elliptic equation,
$$\begin{gathered} - \partial _i (a_{ij} (x)\partial _j u) + b_i (x)\partial _i u + c(x)u = f(x),in\Omega , \hfill \\ \partial _v u|_{\partial \Omega } = \phi (s),s \in \partial \Omega , \hfill \\ \end{gathered} $$
on the basis of measurement data
$$u(s) = z(s),s \in B \subset \partial \Omega ,$$
with an equality constraint and inequality constraints on the parameters. The cost functionals are one-sided Gâteaux differentiable with respect to the state variables and the parameters. Using the Duboviskii-Milyutin lemma, we get maximum principles for the identification problems, which are necessary conditions for the existence of optimal parameters.

Key Words

System identification parameter constraints one-sided Gâteaux differentiable functionals distributed-parameter systems maximum principle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anikonov, Yu. E.,Generating Functions, Evolution Equations, and Inverse Problems, Doklady Akademii Nauk, Vol. 323, pp. 172–174, 1992 (In Russian).Google Scholar
  2. 2.
    Banks, H. T., andKunisch, K.,Estimation Techniques for Distributed-Parameter Systems, Birkhäuser, Boston, Massachusetts, 1989.Google Scholar
  3. 3.
    Banks, H. T., Reich, S., andRosen, I. G.,An Approximation Theory for the Identification of Nonlinear Distributed-Parameter Systems, SIAM Journal on Control and Optimization, Vol. 28, pp. 523–569, 1990.Google Scholar
  4. 4.
    Barbu, V.,The Approximate Solvability of the Inverse One-Phase Stefan Problem, International Series of Numerical Mathematics, Vol. 99, pp. 33–43, 1991.Google Scholar
  5. 5.
    Belov, Yu. Ya.,On an Inverse Problem for a Semilinear Parabolic Equation, Soviet Mathematics Doklady, Vol. 43, pp. 216–220, 1991.Google Scholar
  6. 6.
    Cannon, J. R., andRundell, W.,An Inverse Problem for an Elliptic Partial Differential Equation, Journal of Mathematical Analysis and Applications, Vol. 126, pp. 329–340, 1987.Google Scholar
  7. 7.
    Chavent, G.,Identification of Distributed-Parameter Systems: About the Output Least-Square Method, Its Implementation, and Identifiability, Identification and System Parameter Estimation, Edited by R. Isermann, Pergamon, New York, New York, pp. 85–97, 1982.Google Scholar
  8. 8.
    Chen, Y. M., andZhang, F. G.,Hierarchical Multigrid Strategy for Efficiency Improvement of the GPST Inversion Algorithm, Applied Numerical Mathematics, Vol. 6, pp. 431–446, 1990.Google Scholar
  9. 9.
    Friedman, A., andGustafsson, B.,Identification of the Conductivity Coefficient in an Elliptic Equation, SIAM Journal on Mathematical Analysis, Vol. 18, pp. 777–787, 1987.Google Scholar
  10. 10.
    Guyon, F., andYvon, J. P.,On a Weighing Method Improving the Identifiability of Distributed-Parameter Systems, Lecture Notes in Control and Information Sciences, Springer Verlag, Berlin, Germany, Vol. 149, pp. 104–119, 1991.Google Scholar
  11. 11.
    Hu, S. J., andYu, W. H.,Identification of the Surface Temperature in a Floated Gyroscope, Proceedings of the 3rd IFAC Symposium of Control of Distributed-Parameter Systems, Toulouse, France, pp. 347–352, 1982.Google Scholar
  12. 12.
    Isakov, V.,Inverse Source Problems, American Mathematical Society, Providence, Rhode Island, 1990.Google Scholar
  13. 13.
    Korn, R. V., andVogelius, M.,Determining Conductivity by Boundary Measurements, Communications on Pure and Applied Mathematics, Vol. 37, pp. 289–298, 1984.Google Scholar
  14. 14.
    Lavrent'ev, M. M., Romanov, V. G., andShishatskii, X. X.,Ill-Posed Problems of Mathematical Physics and Analysis, Translations of Mathematical Monographs, American Mathematical Society, Providence, Rhode Island, Vol. 64, 1986.Google Scholar
  15. 15.
    Romanov, V. G.,Inverse Problems of Mathematical Physics, VNU Science Press BV, Utrecht, Netherlands, 1987.Google Scholar
  16. 16.
    Suzuki, T.,Gelfand-Levitan Theory and Related Inverse Problems, Inverse Problems: Proceedings of a Conference Held at the Mathematical Research Institute, Oberwolfach, Germany, 1986; Edited by J. R. Cannon and U. Hornung, Birkhäuser Verlag, Basel, Switzerland, pp. 163–171, 1986.Google Scholar
  17. 17.
    Sylvester, J., andUhlmann, G.,Inverse Boundary-Value Problems at the Boundary-Continuous Dependence, Communications of Pure and Applied Mathematics, Vol. 41, pp. 197–219, 1988.Google Scholar
  18. 18.
    Yu, W. H.,On Well-Posedness of Inverse Problems for a Class of Hyperbolic Equations, Chinese Mathematical Annals, Vol. 10, pp. 1–9, 1988.Google Scholar
  19. 19.
    Yu, W. H.,A Rapid Convergent Iteration Method for Identifying Distributed Parameters in Partial Differential Equations, IFAC Symposium on Identification and System Parameter Estimation, Beijing, China, 1988.Google Scholar
  20. 20.
    Yu, W. H., andSeinfeld, J. H.,Identification of Parabolic Distributed-Parameter Systems by Regularization with Differential Operators, Journal of Mathematical Analysis and Applications, Vol. 132, pp. 365–398, 1988.Google Scholar
  21. 21.
    Yu, W. H., andSeinfeld, J. H.,Identification of Distributed-Parameter Systems with Pointwise Constraints on the Parameters, Journal of Mathematical Analysis and Applications, Vol. 136, pp. 497–520, 1988.Google Scholar
  22. 22.
    Gilgarg, D., andTrudinger, N. S.,Elliptic Partial Differential Equations of Second Order, Springer Verlag, New York, New York, 1977.Google Scholar
  23. 23.
    Girsanov, I. V.,Lectures on the Mathematical Theory of Extremum Problems, Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Berlin, Germany, Vol. 67, 1972.Google Scholar
  24. 24.
    Zeidler, E.,Nonlinear Functional Analysis and Its Applications, Vol. 3: Variational Methods and Optimization, Springer Verlag, Berlin, Germany, 1985.Google Scholar
  25. 25.
    Dunford, N., andSchwartz, J. T.,Linear Operators, Vol. 1, Interscience Publishers, New York, New York, 1958.Google Scholar
  26. 26.
    Lusternik, L. A., andSobolev, V. J.,Elements of Functional Analysis, Hindustan Publishing Corporation, Delhi, India, 1961.Google Scholar
  27. 27.
    Lions, J. L., andMagenes, E.,Nonhomogeneous Boundary-Value Problems and Applications, Vols. 1–2, Springer Verlag, New York, New York, 1972.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • W. H. Yu
    • 1
  1. 1.Department of MathematicsTianjin UniversityTianjinPeople's Republic of China

Personalised recommendations