Advertisement

Journal of Optimization Theory and Applications

, Volume 87, Issue 1, pp 141–165 | Cite as

Invex-convexlike functions and duality

  • P. Q. Khanh
Contributed Papers

Abstract

We define a class of invex-convexlike functions, which contains all convex, pseudoconvex, invex, and convexlike functions, and prove that the Kuhn-Tucker sufficient optimality condition and the Wolfe duality hold for problems involving such functions. Applications in control theory are given.

Key Words

Invex-convexlike functions Kuhn-Tucker sufficient condition Wolfe duality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mangasarian, O. L.,Nonlinear Analysis, McGraw-Hill, New York, New York, 1969.Google Scholar
  2. 2.
    Hanson, M. A.,On Sufficiency of the Kuhn-Tucker Conditions, Journal of Mathematical Analysis and Applications, Vol. 80, pp. 545–550, 1981.CrossRefGoogle Scholar
  3. 3.
    Craven, B. D.,Duality for Generalized Convex Fractional Programs, Generalized Concavity in Optimization and Economics, Edited by S. Schaible and W. T. Ziemba, Academic Press, New York, New York, pp. 473–489, 1981.Google Scholar
  4. 4.
    Craven, B. D., andGlover, B. M.,Invex Functions and Duality, Journal of the Australian Mathematical Society, Vol. 39A, pp. 1–20, 1985.Google Scholar
  5. 5.
    Ben-Israel, A., andMond, B.,What is Invexity?, Journal of the Australian Mathematical Society, Vol. 28B, pp. 1–9, 1986.Google Scholar
  6. 6.
    Hanson, M. A., andMond, B.,Necessary and Sufficient Conditions in Constraint Optimization, Mathematical Programming, Vol. 37, pp. 51–58, 1987.Google Scholar
  7. 7.
    Weir, T., andMond, B.,Preinvex Functions in Multiple-Objective Optimization, Journal of Mathematical Analysis and Applications, Vol. 136, pp. 29–38, 1988.CrossRefGoogle Scholar
  8. 8.
    Craven, B. D.,A Modified Dual for Weak Vector Optimization, Numerical Functional Analysis and Optimization, Vol. 10, pp. 899–907, 1989.Google Scholar
  9. 9.
    Reiland, T. W.,Generalized Invexity for Nonsmooth Vector-Valued Mappings, Numerical Functional Analysis and Optimization, Vol. 10, pp. 1191–1202, 1989.Google Scholar
  10. 10.
    Reiland, T. W.,Nonsmooth Invexity, Bulletin of the Australian Mathematical Society, Vol. 42, pp. 437–446, 1990.Google Scholar
  11. 11.
    Sach, P. H., andCraven, B. D.,Invex Multifunctions and Duality, Numerical Functional Analysis and Optimization, Vol. 12, pp. 575–591, 1991.Google Scholar
  12. 12.
    Jahn, J.,Mathematical Vector Optimization in Partially-Ordered Linear Spaces, Verlag Peter Lang, Frankfurt am Main, Germany, 1986.Google Scholar
  13. 13.
    Khanh, P. Q., andNuong, T. H.,On Necessary and Sufficient Conditions in Vector Optimization, Journal of Optimization Theory and Applications, Vol. 63, pp. 391–413, 1989.CrossRefGoogle Scholar
  14. 14.
    Khanh, P. Q.,Proper Solutions of Vector Optimization Problems, Journal of Optimization Theory and Applications, Vol. 74, pp. 105–130, 1992.CrossRefGoogle Scholar
  15. 15.
    Khanh, P. Q., andNuong, T. H.,On Necessary Optimality Conditions in Vector Optimization Problems, Journal of Optimization Theory and Applications, Vol. 58, pp. 63–81, 1988.CrossRefGoogle Scholar
  16. 16.
    Fan, K.,Minimax Theorems, Proceedings of the National Academy of Sciences, USA, Vol. 39, pp. 42–47, 1953.Google Scholar
  17. 17.
    Jeyakumar, V.,Convexlike Alternative Theorems and Mathematical Programming, Optimization, Vol. 16, pp. 643–652, 1985.Google Scholar
  18. 18.
    Jeyakumar, V., andWolkowicz, H.,Zero Duality Gaps in Infinite-Dimensional Programming, Journal of Optimization Theory and Applications, Vol. 67, pp. 87–108, 1990.CrossRefGoogle Scholar
  19. 19.
    Nuong, T. H.,Optimality Conditions in Cooperative Differential Games, Control and Cybernetics, Vol. 18, pp. 95–114, 1989.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • P. Q. Khanh
    • 1
  1. 1.Department of Mathematics and InformaticsHochiminh City UniversityHochiminh CityVietnam

Personalised recommendations