Advertisement

Optimal ℋ-state feedback control for continuous-time linear systemsfeedback control for continuous-time linear systems

  • P. L. D. Peres
  • J. C. Geromel
  • S. R. Souza
Contributed Papers

Abstract

This paper proposes a convex programming method to achieve optimal ℋ-state feedback control for continuous-time linear systems. State space conditions, formulated in an appropriate parameter space, define a convex set containing all the stabilizing control gains that guarantee an upper bound on the ℋ-norm of the closed-loop transfer function. An optimization problem is then proposed, in order to minimize this upper bound over the previous convex set, furnishing the optimal ℋ-control gain as its optimal solution. A limiting bound for the optimum ℋ-norm can easily be calculated, and the proposed method will achieve minimum attenuation whenever a feasible state feedback controller exists. Generalizations to decentralized and output feedback control are also investigated. Numerical examples illustrate the theory.

Key Words

-optimization convex analysis state feedback control continuous-time systems linear systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doyle, J. C., Glover, K., Khargonekar, P. P., andFrancis, B. A., State-Space Solutions to Standard ℋ- and ℋ-Control Problems, IEEE Transactions on Automatic Control, Vol. 34, pp. 831–847, 1989.CrossRefGoogle Scholar
  2. 2.
    Petersen, L. R., Disturbance Attenuation and ℋ-Optimization: A Design Method Based on the Algebraic Riccati Equation, IEEE Transactions on Automatic Control, Vol. 32, pp. 427–429, 1987.CrossRefGoogle Scholar
  3. 3.
    Scherer, C., ℋ-Control by State Feedback: An Iterative Algorithm and Characterization of High-Gain Occurrence, Systems and Control Letters, Vol. 12, pp. 383–391, 1989.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Veillette, R. J., andMedanić, J. V., ℋ-Norm Bounds for ARE-Based Designs, Systems and Control Letters, Vol. 13, pp. 193–204, 1989.CrossRefGoogle Scholar
  5. 5.
    Zhou, K., andKhargonekar, P. P., An Algebraic Riccati Equation Approach to ℋ-Optimization, Systems and Control Letters, Vol. 11, pp. 85–91, 1988.CrossRefGoogle Scholar
  6. 6.
    Geromel, J. C., Peres, P. L. D., andSouza, S. R., Quadratic Stabilizability of Linear Uncertain Systems with Presribed ℋ-Norm Bounds, Proceedings of the 1st IFAC Symposium on Design Methods of Control Systems, Zurich, Switzerland, pp. 302–307, 1991.Google Scholar
  7. 7.
    Khargonekar, P. P., andRotea, M. A., Mixed ℋ2/ℋ-Control: A Convex Optimization Approach, IEEE Transactions on Automatic Control, Vol. 36, pp. 824–837, 1991.CrossRefGoogle Scholar
  8. 8.
    Athans, M.,The Matrix Minimum Principle, Information Control, Vol. 11, pp. 592–606, 1968.CrossRefGoogle Scholar
  9. 9.
    Geromel, J. C., Peres, P. L. D., andBernussou, J.,On a Convex Parameter Space Method for Linear Control Design of Uncertain Systems, SIAM Journal on Control and Optimization, Vol. 29, pp. 381–402, 1991.CrossRefGoogle Scholar
  10. 10.
    Scherer, C., ℋ-Control by State Feedback and Fast Algorithms for the Computation of Optimal ℋ-Norms, IEEE Transactions on Automatic Control, Vol. 35, pp. 1090–1099, 1990.CrossRefGoogle Scholar
  11. 11.
    Petersen, I. R.,A Procedure for Simultaneously Stabilizing a Collection of Single Input Linear Systems Using Nonlinear State Feedback Control, Automatica, Vol. 23, pp. 33–40, 1987.CrossRefGoogle Scholar
  12. 12.
    Bernussou, J., Peres, P. L. D., andGeromel, J. C.,A Linear Programming Oriented Procedure for Quadratic Stabilization of Uncertain Systems, Systems and Control Letters, Vol. 13, pp. 65–72, 1989.CrossRefGoogle Scholar
  13. 13.
    Luenberger, D. G.,Introduction to Linear Programming, Addison-Wesley, Reading, Massachusetts, 1973.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • P. L. D. Peres
    • 1
  • J. C. Geromel
    • 1
  • S. R. Souza
    • 1
  1. 1.Laboratory of Convex Analysis, Department of Telematics, Faculty of Electrical EngineeringUniversity of CampinasCampinasBrazil

Personalised recommendations