Skip to main content
Log in

Microbial and non-biological decomposition of chlorophenols and phenol in soil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The aerobic and anaerobic degradation of phenol and selected chlorophenols was examined in a clay loam soil containing no added nutrients. A simple, efficient procedure based on the high solubility of these compounds in 95% ethanol was developed for extracting phenol and chlorophenol residues from soil. Analysis of soil extracts with UV spectrophotometry showed that phenol,o-chlorophenol,p-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol and 2,4,6-trichlorophenol were rapidly degraded, whilem-chlorophenol, 3,4-dichlorophenol, 2,4,5-trichlorophenol and pentachlorophenol were degraded very slowly by microorganisms in aerobically-incubated soil at 23°C. Both 3,4,5-trichlorophenol and 2,3,4,5-tetra chlorophenol appeared to be more resistant to degradation by aerobic soil microorganisms at 23°C. None of the compounds examined were degraded by microorganisms in anaerobically-incubated soil at 23°C. Direct microscopic observation revealed that phenol and selected chlorophenols stimulated aerobic and to a lesser extent, anaerobic microbial growth in soil, and aerobic soil bacteria were responsible for the degradation of 2,4-dichlorophenol in aerobically-incubated soil at 23°C. Phenol,o-chlorophenol,m-chlorophenol,p-chlorophenol and 2,4-dichlorophenol underwent rapid non-biological degradation in sterile silica sand. Non-biological decomposition contributed, perhaps substantially, to the removal of some chlorophenols from sterile aerobically-incubated soil and both sterile and non-sterile anaerobically-incubated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Bahrani, K. S. and Martin, R. J.: 1976,Water Res. 10, 731.

    Google Scholar 

  • Alexander, M. and Aleem, M. I. H.: 1961,J. Agr. Food. Chem. 9, 44.

    Google Scholar 

  • Dorschner, K. D. and Buchholtz, K. P.: 1957,Weeds 5, 102.

    Google Scholar 

  • Evans, W. C., Smith, B. S. W., Fernley, H. N., and Davies, J. I.: 1971,Biochem. J. 122, 543.

    Google Scholar 

  • Fawcett, C. H., Taylor, H. F., Wain, R. L., and Wightman, F.: 1958,Proc. Roy. Soc. (London). B148, 543.

    Google Scholar 

  • Fitzgerald, C. H., Brown, C. L., and Beck, E. G.: 1967,Plant Physiol. 42, 459.

    Google Scholar 

  • Freal, J. F. and Chadwick, R. W.: 1973,J. Agr. Food Chem. 21, 424.

    Google Scholar 

  • Greenwood, D. J. and Goodman, D.: 1964,J. Sci. Food Agric. 15, 579.

    Google Scholar 

  • Greenwood, D. J. and Goodman, D.: 1967,J. Sci. Food Agric. 18, 182.

    Google Scholar 

  • Helling, C. S., Kearney, P. C., and Alexander, M.: 1971,Advances in Agronomy, Academic Press, New York, 23, p. 170.

    Google Scholar 

  • Ide, A., Niki, Y., Sakamoto, F., Watanabe, I., and Watanabe, H.: 1972,Agr. Biol. Chem. 36, 1937.

    Google Scholar 

  • Kuwatsuka, S. and Michiyo, I.: 1975,Soil Sci. Plant Nutr 21, 405.

    Google Scholar 

  • Loos, M. A., Bollag, J.-M., and Alexander, M.: 1967a,J. Agr. Food Chem. 15, 858.

    Google Scholar 

  • Loos, M. A., Roberts, R. N., and Alexander, M.: 1967b,Can. J. Microbiol. 13, 679.

    Google Scholar 

  • Loos, M. A., Roberts, R. N., and Alexander, M.: 1967c,Can. J. Microbiol. 13, 691.

    Google Scholar 

  • Luckwill, L. C. and Lloyd-Jones, C. P.: 1960,Ann. Appl Biol. 48, 626.

    Google Scholar 

  • MacRae, I. C. and Alexander, M.: 1965,J. Agr. Food Chem. 13, 72.

    Google Scholar 

  • MacRae, I. C., Alexander, M., and Rovira, A. D.: 1963,J. Gen. Microbiol 32, 69.

    Google Scholar 

  • Mortland, M. M.: 1970,Advances in Agronomy, Academic Press, New York,22, p. 75.

    Google Scholar 

  • Murthy, N. B. K., Kaufman, D. D., and Fries, G. F.: 1979,J. Environ. Sci. Health. B 14(1), 1.

    Google Scholar 

  • Plimmer, J. R.: 1970,Residues Reviews, Springer-Verlag, New York,33, p. 47.

    Google Scholar 

  • Plimmer, J. R. and Klingebiel, U. I.: 1971,Science 174, 407.

    Google Scholar 

  • Polonenko, D. R., Pike, D. J., and Mayfield, C. I.: 1978,Can. J. Microbiol 24, 1262.

    Google Scholar 

  • Rinehart, K. L., Jr.: 1973,Oxidation and Reduction of Organic Compounds, Prentice-Hall Inc., New Jersey, p. 86.

    Google Scholar 

  • Stark, A.: 1969,J. Agr. Food Chem. 17, 871.

    Google Scholar 

  • Steenson, T.I. and Walker, N.: 1957,J. Gen. Microbiol. 16, 146.

    Google Scholar 

  • Suzuki, T.: 1977,J. Environ. Sci. Health B12(2), 113.

    Google Scholar 

  • Tabak, H. H., Chambers, C. W., and Kabler, P. W.: 1964,J. Bacteriol. 87, 910.

    Google Scholar 

  • Watanabe, I.: 1978,Soil Biol. Biochem. 10, 71.

    Google Scholar 

  • Wright, F. C., Ritter, J. C., Palmer, J. S., and Schlinke, J. C.: 1970,J. Agr. Food Chem. 18, 845.

    Google Scholar 

  • Yasuhara, A., Otsuki, A., and Fuwa, K.: 1977,Chemosphere 10, 659.

    Google Scholar 

  • Zepp, R. G., Wolfe, N. L., Gordon, J. A., and Baughman, G.L.: 1975,Environ. Sci. Technol. 9, 1144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, M.D., Mayfield, C.I. Microbial and non-biological decomposition of chlorophenols and phenol in soil. Water Air Soil Pollut 13, 411–424 (1980). https://doi.org/10.1007/BF02191842

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02191842

Keywords

Navigation