Advertisement

Molecular and General Genetics MGG

, Volume 248, Issue 2, pp 236–241 | Cite as

Regulation of glycerol and maltose uptake by the IIAGlc-like domain of IINag of the phosphotransferase system inSalmonella typhimurium LT2

  • J. van der Vlag
  • P. W. Postma
Original Paper

Abstract

InEnterobacteriaceae the nonphosphorylated form of IIAG1c of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) can inhibit the uptake and subsequent metabolism of glycerol and maltose by binding to, and inhibiting, glycerol kinase and the Ma1K protein of the maltose transport system, respectively. In this report we show that the IIAGlc-Iike domain of the membrane-bound IIN-acetylglucosamine (IINag) of the PTS can replace IIAGlc in aSalmonella typhimurium crr mutant strain that lacks all soluble IIAGlc. The inhibition was most severe in cells which were partially induced for the glycerol or maltose up take systems. TheStreptococcus thermophilus lactose transporter LacS, which also contains a IIAGlc-like domain, could not replace IIAGlc. Neither IINag nor LacS could replace IIAGlc in activation of adenylate cyclase.

Key words

Phosphotransferase system Inducer exclusion Salmonella typhimurium Glucose PTS Regulation of transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fürste JP, Pansegrau W, Frank R, Blöcker H, Scholz P, Bagdasarian M, Lanka E (1986) Molecular cloning of the plasmid RP4 primase region in a multi-host-rangetacP expression vector. Gene 48:119–131Google Scholar
  2. Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol. 5B. Academic Press, New York, pp 209–334Google Scholar
  3. Hurley JH, Faber HR, Worthylake D, Meadow ND, Roseman S, Pettigrew DW, Remington SJ (1993) Structure of the regulatory complex ofEscherichia coli 111G1c with glycerol kinase. Science 259: 673–677Google Scholar
  4. Kricker M, Hall BG (1984) Directed evolution of cellobiose utilization inEscherichia coli K12. Mol Biol Evol 1:171–182Google Scholar
  5. Lengeler J (1980) Characterisation of mutants ofEscherichia coli K12, selected by resistance to streptozotocin. Mol Gen Genet 179: 49–54Google Scholar
  6. Nelson SO, Scholte BJ, Postma PW (1982) Phosphoenol pyruvate:sugar phosphotransferase system-mediated regulation of carbohydrate metabolism inSalmonella typhimurium. J Bacteriol 150: 604–615Google Scholar
  7. Parker LL, Hall BG (1990) Characterization and nucleotide sequence of the cryptic cel operon ofEscherichia coli K12. Genetics 124: 455–471Google Scholar
  8. Poolman B, Royer TJ, Mainzer SE, Schmidt BF (1989) Lactose transport system ofStreptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems. J Bacteriol 171: 244–253Google Scholar
  9. Poolman B, Modderman R, Reizer J (1992) Lactose transport system ofStreptococcus thermophilus. The role of histidine residues. J Biol Chem 267: 9150–9157Google Scholar
  10. Postma PW (1977) Galactose transport inSalmonella typhimurium. J Bacteriol 129: 630–639Google Scholar
  11. Postma PW, Broekhuizen CP, Geerse RH (1989) The role of the PEP:carbohydrate phosphotransferase system in the regulation of bacterial metabolism. FEMS Microbiol Rev 63: 69–80Google Scholar
  12. Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57: 543–594Google Scholar
  13. Postma PW, van der Vlag J, de Waard JH, Yap WMGJ, van Dam K, Ruijter GIG (1994) Enzymes II of the phosphotransferase system: transport and regulation. In: Torriani AM, Silver S, Yagil E (eds) Molecular biology of phosphate metabolism in microorganisms. ASM Press, Washington DC, pp 169–174Google Scholar
  14. Presper KA, Wong C-Y, Liu L, Meadow ND, Roseman S (1989) Site-directed mutagenesis of the phosphocarrier protein, IIIG1c a major signal-transducing protein inEscherichia coli. Proc Natl Acad Sci USA 86: 4052–4055Google Scholar
  15. Reizer J, Sutrina SL, Wu LF, Deutscher J, Reddy P, Saier Jr. MH (1992) Functional interactions between proteins of the phosphoenolpyruvate:sugar phosphotransferase systems ofBacillus subtilis andEscherichia coli. J Biol Chem 267: 9158–9169Google Scholar
  16. Roseman S, Meadow ND, Kukuruzinska MA (1982) PEP:glycose phosphotransferase system. General description and assay principles. Methods in Enzymol 90: 417–423Google Scholar
  17. Ruijter GJG, Postma PW, van Dam K (1991) Control of glucose metabolism by enzyme IIG1c of the phosphoenolpyruvate-dependent phosphotransferase system inEscherichia coli. J. Bacteriol 173: 6184–6191Google Scholar
  18. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  19. Schnetz K, Sutrina SL, Saier MH Jr, Rak B (1990) Identification of catalytic residues in theβ-glucoside permease ofEscherichia coli by site-specific mutagenesis and demonstration of interdomain cross-reactivity between theβ-glucoside and glucose systems. J Biol Chem 265: 13464–13471Google Scholar
  20. Scholte BJ, Schuitema ARJ, Postma PW (1982) Characterization of factor IIIG1c in catabolite repression-resistant (crr) mutants ofS. typhimurium. J Bacteriol 149: 576–586Google Scholar
  21. Schunk T, Rhiel E, de Meyer R, Buhr A, Hummel U, Wehrli C, Flükiger K, Erni B (1992) Modular design and multiple functions: the hexose transporters of the bacterial phosphotransferase system. In Quagliariello E, Palmieri F (eds) Molecular mechanisms of transport. Elsevier Science Publishing, Amsterdam, pp 87–95Google Scholar
  22. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–85Google Scholar
  23. Stock JB, Waygood EB, Meadow ND, Postma PW, Roseman S (1982) Sugar transport by the bacterial phosphotransferase system. The glucose receptors of theSalmonella typhimurium phosphotransferase system. J Biol Chem 257: 14543–14552Google Scholar
  24. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354Google Scholar
  25. Vogler AP, Lengeler JW (1988) Complementation of a truncated membrane-bound enzyme IINag fromKlebsiella pneumoniae with a soluble enzyme III inEscherichia coli K12. Mol Gen Genet 213: 175–178Google Scholar
  26. Vogler AP, Lengeler JW (1991) Comparison of the sequences of thenagE operons fromKlebsiella pneumoniae andEscherichia coli K12: enhanced variability of the enzyme IIN-acetylglucosamine in regions connecting functional domains. Mol Gen Genet 230: 270–276Google Scholar
  27. Vogler AP, Broekhuizen CP, Schuitema A, Lengeler JW, Postma PW (1988) Suppression of IIIG1c-defects by enzymes IINag and IIBg1 of the PEP:carbohydrate phosphotransferase system. Mol Microbiol 2: 719–726Google Scholar
  28. Zeng GQ, de Reuse H, Danchin A (1992) Mutational analysis of the enzyme IIIG1c of the phosphoenolpyruvate phosphotransferase system inEscherichia coli. Res Microbiol 143: 251–261Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • J. van der Vlag
    • 1
  • P. W. Postma
    • 1
  1. 1.E.C. Slater Institute, BioCentrumUniversity of AmsterdamTV AmsterdamThe Netherlands

Personalised recommendations