Basic Research in Cardiology

, Volume 86, Issue 5, pp 461–475 | Cite as

Vasomotor coronary oscillations: A model to evaluate autoregulation

  • A. Y. K. Wong
  • G. A. Klassen
Original Contributions

Summary

A simple model was proposed to characterise the oscillatory and nonoscillatory pattern of canine coronary circulation responses induced by a small dose of a vasodilator adenosine or the Ca2+-channel blocker diltiazem. This model consists of two differential equations describing the interaction of dilating (D) and constricting (C) resistance components. With the assumption that the rate constants associated with (D) were dependent on adenosine concentration and those associated with (C) were a function of Ca2+ channels, the model predicted: a) a damped oscillation of resistance to flow at low dose of adenosine, b) a predominant vasodilation at high dose of adenosine, and c) a sustained vasodilation in response to diltiazem. Parameters characterising the coronary resistance were evaluated by fitting the model results to calculated resistance from measured coronary flow and aortic pressure. As well, the model predicted accurately the peak resistance to great cardiac and coronary sinus venous flow in patients. This study indicates that the oscillation frequency of coronary resistance induced by a low dose of adenosine (0.01 mg/kg) is indicative of the uptake rate of adenosine by the heart and the coronary resistance provides considerable information on vasomotor control of the coronary circulation.

Key words

adenosine coronaryresistance oscillations vasomotion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bassingthwaight JB, Sparks HV Jr, Chan IS, De Witt DF, Gorman MW (1985) Modeling of transendothelial transport. Fed Proc 44:2623–2626PubMedGoogle Scholar
  2. 2.
    Braakman RP, Sipkema P, Westerhof N (1983) Steady state and instantaneous pressure-flow relationships: characterisation of the canine abdominal periphery. Cardiovasc Res 17:577–588PubMedGoogle Scholar
  3. 3.
    Busse R, Trogisch G, Bassenge E (1985) The role of endothelium in the control of vascular tone. Basic Res Cardiol 80:475–490CrossRefPubMedGoogle Scholar
  4. 4.
    De May JG, Vanhoutte PM (1982) Heterogeneous behavior of the canine arterial and venous wall: importance of endothelium. Circ Res 51:439–447PubMedGoogle Scholar
  5. 5.
    Dole WP (1987) Autoregulation of coronary circulation. Prog Cardiovasc Res 29:293–323CrossRefGoogle Scholar
  6. 6.
    Editorial (1988) Yin and yang in vasomotor control. Lancet 2:19–21Google Scholar
  7. 7.
    Furchgott R, Zawadski J (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376CrossRefPubMedGoogle Scholar
  8. 8.
    Gerlach E, Nees S, Becker BF (1985) The vascular endothelium: a survey of some newly evilving biochemical and physiological features. Basic Res Cardiol 80:459–474CrossRefPubMedGoogle Scholar
  9. 9.
    Griffith TM, Edwards DH, Lewis MJ, Newbury AC, Henderson AH (1984) The nature of endothelium derived relaxant factor. Nature 308:645–647CrossRefPubMedGoogle Scholar
  10. 10.
    Griffith TM, Edwards DH, Newbury AC, Lewis MJ, Henderson AH (1986) Production of endothelium derived relaxant factor is dependent on oxidative phosphorylation and extracellular calcium. Cardiovasc Res 20:7–12PubMedGoogle Scholar
  11. 11.
    Harrison DG, Freiman PC, Armstrong ML, Marcus ML, Heistad DD (1987) Alterations of vascular reactivity in atherosclerosis. Circ Res 61 (Suppl.II):II 74–80Google Scholar
  12. 12.
    Hoffman JIE, Spaan JAE (1990) Pressure-flow relation in coronary circulation. Physiol Rev 70:331–390PubMedGoogle Scholar
  13. 13.
    Kenner T, Ono K (1972) Analysis of slow autooscillations of arterial flow. Pflügers Arch 331:347–356CrossRefGoogle Scholar
  14. 14.
    Kenner T, Ono K (1988) Oscillations of arterial blood flow. Proc the 9th Int Conf Cardiovasc Syst Dynamics Soc, pp 109–112Google Scholar
  15. 15.
    Klassen GA, Armour JA (1990) Adenosine-induced oscillations in coronary flow: a probe to evaluate vasomotor control. Coronary Art Dis 1:221–232Google Scholar
  16. 16.
    Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in endothelial cells as mechanotransducers. Nature 325:811–813Google Scholar
  17. 17.
    Maseri A, Davies G, Hackett D, Kaski JC (1990) Coronary artery spasm and vasoconstriction. Circulation 81:1983–1991PubMedGoogle Scholar
  18. 18.
    Marzilli M, Klassen GA, Marraccini P, Camici P, Trivella MG, L'Abbate A (1988) Effects of adenosine on coronary blood flow in conscious man. Proc the 9th Int Conf Cardiovasc Syst Dynamics Soc 343–346Google Scholar
  19. 19.
    Marzilli M, Klassen GA, Marraccini P, Camici P, Trivella MG, L'Abbate A (1989) Coronary effects of adenosine in conscious man. Eur Heart J 10 (Suppl F):78–81Google Scholar
  20. 20.
    Nees S, Herzog V, Becker BF, Bock M, DesRosiers C, Gerlach E (1985) The coronary endothelium: a highly active metabolic barrier for adenosine. Basic Res Cardiol 80:515–529CrossRefPubMedGoogle Scholar
  21. 21.
    Nees S, DesRosiers C, Bock M (1987) Adenosine receptors at the coronary endothelium: functional implication. In: Gerlach E, Becker BF (eds) Topics and perspectives in adenosine research. Springer-Verlag, Berlin, pp 454–467Google Scholar
  22. 22.
    Olesen SP, Clapham DE, Davies PF (1988) Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:168–170CrossRefPubMedGoogle Scholar
  23. 23.
    Sacher G (1942) Periodic phenomena in the interaction of two neurons. Bull Math Biophy 4:77–81Google Scholar
  24. 24.
    Schelling ME, Meininger CJ, Hawker JR Jr, Granger HJ (1988) Venular endothelial cells from bovine heart. Am J Physiol 254:H1211-H1217PubMedGoogle Scholar
  25. 25.
    Sollevi A (1986) Cardiovascular effects of adenosine in man; possible clinical applications. Prog Neurobiol 27:319–349CrossRefPubMedGoogle Scholar
  26. 26.
    van Breeman V, Saida K (1989) Cellular mechanisms regulating [Ca2+]i of smooth muscle. Ann Rev Physiol 51:315–329Google Scholar
  27. 27.
    Wangler RD, Gorman MW, Wang CY, DeWitt DF, Chan IS, Bassingthwaighte JB, Sparks HV (1989) Transcapillary adenosine transport and interstitial adenosine concentration in guinea pig hearts. Am J Physiol 257:H89-H106PubMedGoogle Scholar
  28. 28.
    Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415PubMedGoogle Scholar

Copyright information

© Steinkopff Verlag 1991

Authors and Affiliations

  • A. Y. K. Wong
    • 1
  • G. A. Klassen
    • 1
  1. 1.Department of Physiology and Biophysics, and MedicineDalhousie UniversityHalifaxCanada

Personalised recommendations