Skip to main content
Log in

Mechanisms in acute septic cardiomyopathy: Evidence from isolated myocytes

  • Editorial
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Although often not considered, the heart is one of the targets of multiple organ failure in sepsis and septic shock, with myocardial depression being a prominent component of this “acute septic cardiomyopathy”. Hypotheses concerning the etiology of this depression are increasingly elucidated on a cellular level, including dysfunction of the β-adrenoceptor/G protein/adenylate cyclase system, calcium channel blockade by cardiodepressant factor, contractile impairment by activated leucocytes, as well as inhibition of protein synthesis by Pseudomonas exotoxin A.

In the search for “mechanisms of myocardial depression in sepsis”, isolated cardiomyocytes may play a role as research tools with respect to: a) discrimination between direct and indirect cardiodepressant effects; b) identifying not only the acute, but also chronic toxin- and mediator-induced cardiodepression; c) clarification of the mechanism of action of cardiodepressant bacterial toxins and sepsis mediators; d) establishment of in vitro models of leucocyte-mediated cardiodepressann in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abel FL (1989) Myocardial function in sepsis and endotoxin shock. Am J Physiol 257:R1265-R1281

    PubMed  Google Scholar 

  2. Bender B, Milsark IW, Cerami AC (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229:869–871

    PubMed  Google Scholar 

  3. Bristow MR, Port JD, Sandoval AB, Rasmussen R, Ginsburg R, Feldman AM (1989) β-adrenergic receptor pathways in the failing human heart. Heart Failure 5:77–90

    Google Scholar 

  4. Calandra T, Baumgartner JD, Grau GE, Wu MM, Lambert PH, Schellekens J, Verhoef J, Glauser MP and the Swiss-Dutch J5 Immunoglobulin Study Group (1990) Prognostic values of tumor necrosis factor/cachectin, interleukin-1, interferon-α, and interferon-γ in the serum of patients with septic shock. J Infect Disease 161:982–987

    Google Scholar 

  5. Carli A, Auclair M-C (1983) Role of humoral cardiodepressant factors in septic shock — A brief review. In: Lewis DH, Haglund U (eds) Shock Research. Elsevier Science Publishers BV, pp 203–214

  6. Chung MK, Gulick TS, Rotondo RE, Schreiner GF, Lange LG (1990) Mechanism of cytokine inhibition of β-adrenergic agonist stimulation of cyclic AMP in rat cardiac myocytes — Impairment of signal transduction. Circulation Research 67:753–763

    PubMed  Google Scholar 

  7. Conrad SA, Finkelstein JL, Madden MR, Burk J, Goodwin CW (1990) Cardiovascular dysfunction in multiple organ failure. In: Deitch EA (ed) Multiple Organ Failure — Pathophysiology and Basic Concepts of Therapy. Thieme Inc, New York Stuttgart, pp 172–191

    Google Scholar 

  8. Cross AS, Sadoff JC, Iglewski BH, Sokol PA (1980) Evidence for the role of toxin A in the pathogenesis of infection with Pseudomonas aeruginosa in humans. J Infect Dis 142:538–546

    PubMed  Google Scholar 

  9. Danner RL, Natanson C, Elin RJ, Hosseini JM, Banks S, MacVittie TJ, Parrillo JE (1990) Pseudomonas aeruginosa compared with Escherichia coli produces less endotoxemia but more cardiovascular dysfunction and mortality in a canine model of septic shock. Chest 98:1480–1487

    PubMed  Google Scholar 

  10. Entman ML, Youker K, Shappell SB, Siegel C, Rothlein R, Dreyer WJ, Schmalstieg FC, Smith CW (1990) Neutrophil adherence to isolated adult canine myocytes — evidence for a CD18-dependent mechanism. J Clin Invest 85:1497–1506

    PubMed  Google Scholar 

  11. Fuji H, Kuzuya T, Hoshida S, Nishida M, Kim Y, Goshima K, Tada M (1988) Free radicals derived from neutrophils mediate reoxygenation-induced myocardial injury. Circulation Supplement II 78:11–56

    Google Scholar 

  12. Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF (1989) Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte β-adrenergic responsiveness. Proc Natl Acad Sci USA 86:6753–6757

    PubMed  Google Scholar 

  13. Hallström S, Vogl C, Redl H, Schlag G (1990) Net inotropic plasma activity in canine hypovolemic traumatic shock: low molecular weight plasma fraction after prolonged hypotension depresses cardiac muscle performance in vitro. Circ Shock 30:129–144

    PubMed  Google Scholar 

  14. Hallström S, Koidl B, Müller U, Werdan K, Schlag G (1991) A cardiodepressant factor isolated from blood blocks Ca2+ current in cardiomyocytes. Am J Physiol 260:H 869-H 876

    Google Scholar 

  15. Hegewisch S, Weh JH, Hossfeld DK (1990) TNF-induced cardiomyopathy. Lancet I:294–295

    Article  Google Scholar 

  16. Isner JM, Dietz WA (1988) Cardiovascular consequences of recombinant DNA technology: Interleukin-2. Ann Int Med 109:933–935

    PubMed  Google Scholar 

  17. Kaneko M, Chapman DC, Ganguly PK, Beamish RE, Dhalla NS (1991) Modification of cardiac adrenergic receptors by oxygen free radicals. Am J Physiol 260:H821-H826

    PubMed  Google Scholar 

  18. Lefer AM (1983) Pharmacologic and surgical modulation of myocardial depressant factor formation and action during shock. Molecular and Cellular Aspects of Shock and Trauma. Alan R Liss Inc, pp 111–123

  19. Mak IT, Kramer JH, Freedman AM, Tse SYH, Weglicki WB (1990) Oxygen radical-mediated injury of myocytes — protection by propranolol. J Mol Cell Cardiol 22:687–695

    Article  PubMed  Google Scholar 

  20. Massey KD, Burton K (1990) Free radical damage in neonatal rat cardiac myocyte cultures: effects of α-tocopherol, trolox, and phytol. Free Radical Biology & Medicine 8:449–458

    Google Scholar 

  21. Michie HR, Nanogue KR, Spriggs DR, Revhaug A, O'Dwyer S, Dinarello CA, Cerami A, Wolff SM, Wilmore DW (1988) Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318:1481–1486

    PubMed  Google Scholar 

  22. Müller U, Werdan K (1990) Pseudomonas exotoxin A inhibits protein biosynthesis in neonatal rat heart muscle cells and modifies the inotropic state of these cells. J Mol Cell Cardiol 22 Suppl III:S 26

    Google Scholar 

  23. Müller U, Pfeifer A, Reng R, Rupp H, Werdan K (1991) Impairment of the contractile state of cardiomyocytes by Pseudomonas exotoxin A. Circulatory Shock 34:Abstracts 17

  24. Natanson C, Danner RL, Elin RJ, Hosseini JM, Peart KW, Banks SM, MacVittie TJ, Walker RI, Parrillo JE (1989) Role of endotoxemia in cardiovascular dysfunction and mortality. J Clin Invest 83:243–251

    PubMed  Google Scholar 

  25. Natanson C, Eichenholz PW, Danner RL, Eichacker PQ, Hoffman WD, Kuo CG, Banks SM, MacVittie TJ, Parrillo JE (1989) Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med 169:823–832

    Article  PubMed  Google Scholar 

  26. Pardini BJ, Jones SB, Filkins JP (1982) Contribution of depressed uptake to the depletion of norepinephrine from rat heart and spleen during endotoxin shock. Circulatory Shock 9:129–143

    PubMed  Google Scholar 

  27. Parrillo JE (1989) The cardiovascular pathophysiology of sepsis. Ann Rev Med 40:469–485

    PubMed  Google Scholar 

  28. Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, Ognibene FP (1990) Septic shock in humans — Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Annals of Internal Medicine 113:227–242

    PubMed  Google Scholar 

  29. Pilati CF, Clark RS, Gilloteaux J, Bosso FJ, Holcomb P, Maron MB (1990) Excessive sympathetic nervous system activity decreases myocardial contractility. Proc Soc Exp Biol Med 193:225–231

    PubMed  Google Scholar 

  30. Pilz G, Class 1, Boekstegers P, Pfeifer A, Müller U, Werdan K (in press) Pseudomonas immunoglobulin therapy in patients with Pseudomonas sepsis and septic shock. In: Schönfeld H (ed) Antibiotics and Chemotherapy Vol XX: Pseudomonas aeruginosa Infection (Döring G et al, eds). Basel, Karger Inc

  31. Pollack M, Young LS (1979) Protective activity of antibodies to exotoxin A and lipopolysaccharide at the onset of Pseudomonas aeruginosa septicemia in man. J Clin Invest 63:276–286

    PubMed  Google Scholar 

  32. Reithmann C, Werdan K (1989) Noradrenaline-induced desensitization in cultured heart cells as a model for the defects of the adenylate cyclase system in severe heart failure. Naunyn-Schmiedeberg's Arch Pharmacol 339:138–144

    Article  Google Scholar 

  33. Reithmann C, Gierschik P, Sidiropoulos D, Werdan K, Jakobs KH (1989) Mechanism of noradrenaline-induced heterologous desensitization of adenylate cyclase stimulation in rat heart muscle cells: increase in the level of inhibitory G-protein α-subunits. Europ J Pharmacol — Mol Pharmacol Section 172:211–221

    Article  Google Scholar 

  34. Reithmann C, Gierschik P, Müller U, Werdan K, Jakobs KH (1990) Pseudomonas exotoxin A prevents β-adrenoceptor-induced up-regulation of Gi protein α-subunits and adenylate cyclase desensitization in rat heart muscle cells. Molecular Pharmacology 37:631–638

    PubMed  Google Scholar 

  35. Reithmann C, Gierschik P, Werdan K, Jakobs KH (1991) Tumor necrosis factor α up-regulates G and Gβ proteins and adenylate cyclase responsiveness in rat cardiomyocytes. Europ J Pharmacol — Mol Pharmacol Section 206:53–60

    Article  Google Scholar 

  36. Sagher U, Rosen H, Sarel O, Becker Y (1986) Studies on a pancreatic cardiodepressant factor. Circulatory Shock 19:319–327

    PubMed  Google Scholar 

  37. Sardesai SH, Mourant AJ, Sivathandon Y, Farrow B, Gibbons DO (1990) Phaeochromocytoma and catecholamine induced cardiomyopathy presenting as heart failure. Br Heart J 63:234–237

    PubMed  Google Scholar 

  38. Schirmer WJ, Schirmer JM, Fry DE (1989) Recombinant human tumor necrosis factor produces hemodynamic changes characteristic of sepsis and endotoxemia. Arch Surg 124:445–448

    PubMed  Google Scholar 

  39. Schuchter LM, Hendricks CB, Holland KH, Shelton BK, Hutchins GM, Baughman KL, Ettinger DS (1990) Eosinophilic myocarditis associated with high-dose interleukin-2 therapy. Am J Med 88:439–440

    Article  PubMed  Google Scholar 

  40. Schuster HP (1989) Schlußfolgerungen. In: Werdan K (ed) Sepsis: Toxinwirkung, Herzschädigung, Quantifizierung, supportive Therapie mit Immunglobulinen. Intensivmed 26 Suppl 1:S152–S153

  41. Semb AG, Vaage J, Mjos OD (1990) Oxygen free radical producing leucocytes cause functional depression of isolated rat hearts: role of leukotrienes. J Mol Cell Cardiol 22:555–563

    Article  PubMed  Google Scholar 

  42. Snell K, Holder IA, Leppla SA, Saelinger CB (1978) Role of exotoxin and protease virulence factors in experimental infections with Pseudomonas aeruginosa. Infection and Immunity 19:839–884

    PubMed  Google Scholar 

  43. Snell RJ, Parrillo JE (1991) Cardiovascular dysfunction in septic shock. Chest 99:1000–1009

    PubMed  Google Scholar 

  44. Sonnenblick M, Rosenmann D, Rosin A (1990) Reversible cardiomyopathy induced by interferon. Brit Med J 300:1174–1175

    PubMed  Google Scholar 

  45. Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, Parrillo JE (1989) The cardiovascular response of normal humans to the administration of endotoxin. N Eng] J Med 321:280–287

    Google Scholar 

  46. Tracey KJ, Fong Y, Hesse DG, Monongue KR, Lee AT, Kuo GC, Lowry SF, Cerami A (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature 330:662–664

    Article  PubMed  Google Scholar 

  47. Waage A, Halstensen A, Espevik T (1987) Association between tumour necrosis factor in serum and fatal outcome in patients with meningococcal disease. Lancet 1:355–357

    Article  PubMed  Google Scholar 

  48. Wagenknecht B, Hug M, Freudenrich C, Hallström S, Hübner G, Lieberman M, Schlag G, Werdan K (1990) Cardiodepressive and cardiotoxic effects of oxygen free radicals in cultured heart muscle cells. J Mol Cell Cardiol 22 (Supplement III):S51

    Article  Google Scholar 

  49. Wagenknecht B, Hug M, Hübner G, Werdan K (1990) Does superoxide dismutase protect heart muscle cells against oxygen free radicals? Eur Heart J 11 (Abstract Supplement):136

    Google Scholar 

  50. Weitzberg E, Lundberg JM, Rudehill A (1991) Elevated plasma levels of endothelin in patients with sepsis syndrome. Circulatory Shock 33:222–227

    PubMed  Google Scholar 

  51. Werdan K, Melnitzki SM, Pilz G, Kapsner T (1989) The cultured rat heart cell: a model to study direct cardiotoxic effects of Pseudomonas endo- and exotoxins. In: Schlag G, Redl H (eds) Second Vienna Shock Forum; Progress in Clinical and Biological Research Volume 308. Alan R Liss Inc, New York, pp 247–251

    Google Scholar 

  52. Werdan K, Erdmann E (1989) Preparation and culture of embryonic and neonatal heart muscle cells: modification of transport activity. In: Fleischer S, Fleischer B (eds) Methods in Enzymology Vol 173. Biomembranes Part T Cellular and Subcellular Transport: Eukaryotic (Nonepithelial) Cells. Academic Press Inc, San Diego New York, pp 634–662

    Google Scholar 

  53. Woodley SL, McMillan M, Shelby J, Lynch DH, Roberts LK, Ensley RD, Barry WH (1991) Myocyte injury and contraction abnormalities produced by cytotoxic T lymphocytes. Circulation 83:1410–1418

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. G. Riecker on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werdan, K., Müller, U., Reithmann, C. et al. Mechanisms in acute septic cardiomyopathy: Evidence from isolated myocytes. Basic Res Cardiol 86, 411–421 (1991). https://doi.org/10.1007/BF02190709

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02190709

Key words

Navigation