Skip to main content

Functional equations which characterizen-forms and homogeneous functions of degreen

This is a preview of subscription content, access via your institution.

References

  1. Aczél, J.,Lectures on functional equations and their applications. Academic Press, New York, 1966.

    Google Scholar 

  2. Davison, T. M. K.,The definition of quadratic forms. Math. Report No. 91, May, 1977, McMaster University.

  3. Gould, H. W.,Combinatorial identities. Revised Edition, Gould Publications, Morgantown, W. Va., 1972.

    Google Scholar 

  4. Greub, W. H.,Linear algebra. 3rd Ed., Springer, Berlin, New York, 1967.

    Google Scholar 

  5. Herstein, I. N.,Topics in algebra. Second Ed., Xerox College Publishing, Lexington, Mass., 1975.

    Google Scholar 

  6. Lang, S.,Algebra. Addison-Wesley, Reading, Mass., 1965.

    Google Scholar 

  7. McKiernan, M. A.,On vanishing n-th order differences and Hamel bases. Ann. Polon. Math.19 (1967), 331–336.

    Google Scholar 

  8. Mazur, S. andOrlicz, W.,Grundlegende Eigenschaften der polynomischen Operationen. Studia Math.5 (1934), 50–68 and 179–189.

    Google Scholar 

  9. Van der Lijn, G.,La définition fonctionnelle des polynôms dans les groupes abeliens. Fund. Math.33 (1945), 42–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heuvers, K.J. Functional equations which characterizen-forms and homogeneous functions of degreen . Aeq. Math. 22, 223–248 (1981). https://doi.org/10.1007/BF02190182

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02190182

AMS (1980) subject classification

  • Primary 39A25, 10C10, 39A20
  • Secondary 39A40, 05A10