aequationes mathematicae

, Volume 22, Issue 1, pp 173–193 | Cite as

Functions satisfying a discrete mean value property

  • L. Flatto
  • D. Jacobson
Research Papers

AMS (1980) subject classification

Primary 31B05 Secondary 39A10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bers, L., John, F. andSchechter, M.,Partial differential equations. Wiley-Interscience Publishers, New York, 1964.Google Scholar
  2. [2]
    Bochner S. andMartin, W. T.,Several complex variables. Princeton University Press, Princeton, 1948.Google Scholar
  3. [3]
    Ehrenpreis, L.,Fourier analysis in several complex variables. Wiley-Interscience Publishers, New York, 1970.Google Scholar
  4. [4]
    Flatto, L.,Functions with a mean value property. J. Math. Mech.10 (1961), 11–18.Google Scholar
  5. [5]
    Flatto, L.,Functions with a mean value property II. Amer. J. Math.85 (1963), 248–270.Google Scholar
  6. [6]
    Flatto, L.,Partial differential equations and difference equations. Proc. Amer. Math. Soc.16 (1965), 858–863.Google Scholar
  7. [7]
    Flatto, L.,On polynomials characterized by a certain mean value property. Proc. Amer. Math. Soc.17 (1966), 598–601.Google Scholar
  8. [8]
    Flatto, L. andJacobson, D.,Functions satisfying the mean value property for product measures. Amer. J. of Math.97 (1976), 1049–1050.Google Scholar
  9. [9]
    Friedman, A. andLittman, W.,Functions satisfying the mean value property. Trans. Amer. Math. Soc.102 (1962), 167–180.Google Scholar
  10. [10]
    Fischer, B.,Uber algebraische Modulsysteme und linear homogene partielle Differentialgleichungen mit konstanten Koeffizienten. J. Reine Angew. Math.140 (1911), 48–81.Google Scholar
  11. [11]
    Garsia, A.,A note on the mean value property. Trans. Amer. Math. Soc.102 (1962), 181–186.Google Scholar
  12. [12]
    Gröbner, W.,Moderne algebraische Geometrie. Springer-Verlag, Vienna and Innsbruck, 1949.Google Scholar
  13. [13]
    Hodge, W. andPedoe, D.,Methods of algebraic geometry, vol. 2. Cambridge University Press, 1954.Google Scholar
  14. [14]
    van der Waerden, B. L.,Modern algebra. Frederick Ungar Publishing Company, New York, 1950.Google Scholar

Copyright information

© Birkhäuser Verlag 1981

Authors and Affiliations

  • L. Flatto
    • 1
    • 2
  • D. Jacobson
    • 1
    • 2
  1. 1.Department of MathematicsYeshiva UniversityNew YorkUSA
  2. 2.Staten Island Community CollegeStaten IslandUSA

Personalised recommendations