Abstract
We demonstrate how the (1+1)-dimensional Dirac equation can be derived from the equation for the probability distribution governing a stochastic process when particles are permitted to propagate both backwards and forwards in time. This derivation uses a real transfer matrix and does not require a formal analytic continuation from classical physics. The physical significance of the quantity we interpret as being the “wave function” is discussed.
Similar content being viewed by others
References
E. Schrödinger, “Sur la théorie relativiste de l'électron et l'interprétation de la méchanique quantique,”Ann. Henri Poincaré 2, 269(1932).
L. S. Schulman,Techniques and Applications of Path Integration (Wiley, New York, 1981).
I. Fényes, “Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik,”Z. Phys. 132, 81 (1952).
E. Nelson,Phys. Rev. 150, 1079 (1966).
E. Nelson,Quantum Fluctuations (Princeton University Press, Princeton, 1985).
L. Nottale,Fractal Space-Time and Microphysics (World Scientific, Singapore, 1992).
M. S. El Naschie, “A note on quantum mechanics, diffusional interference, and informions,”Chaos, Solitons & Fractals 5 (5), 881–884 (1995).
M. El Naschie, O. E. Rossler, and I. Prigogine.Quantum Mechanics, Diffusion and Chaotic Fractals (Pergamon New York, 1995).
G. N. Ord, “The Schroedinger and diffusion propagators coexisting on a lattice,”J. Phys. A. 29, L123–128 (1996).
G. N. Ord, “The Schroedinger and Dirac free-particle equations without quantum mechanics,”Ann. Phys. (N.Y.), to appear.
B. Gaveau, T. Jacobson, M. Kac, and L.S. Schulman,Phys. Rev. Lett. 53, 419 (1984).
Marc Kac, “A stochastic model related to the telegrapher's equation,”Rocky Mountain J. Math. 4 (1974).
H. A. Gersch,Int. J. Theor. Phys. 20, 491–501 (1981).
T. Jacobson and L.S. Schulman,J. Phys. A 17, 375–383 (1984).
G. N. Ord “A reformulation of Feynman chessboard model,”J. Stat. Phys. 66 (2), 647–659 (1992).
G. N. Ord, “A classical analog of quantum phase,”Int. J. Theor. Phys. 31, 1177–1195 (1992).
G. N. Ord, “Quantum interference from charge conservation,”Phys. Lett. A 173, 343–346 (1993).
D.G.C. McKeon and G.N. Ord,Phys. Rev. Lett. 69, 3 (1992).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
McKeon, D.G.C., Ord, G.N. On how the (1+1)-dimensional Dirac equation arises in classical physics. Found Phys Lett 9, 447–456 (1996). https://doi.org/10.1007/BF02190048
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02190048