Skip to main content
Log in

On how the (1+1)-dimensional Dirac equation arises in classical physics

  • Published:
Foundations of Physics Letters

Abstract

We demonstrate how the (1+1)-dimensional Dirac equation can be derived from the equation for the probability distribution governing a stochastic process when particles are permitted to propagate both backwards and forwards in time. This derivation uses a real transfer matrix and does not require a formal analytic continuation from classical physics. The physical significance of the quantity we interpret as being the “wave function” is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, “Sur la théorie relativiste de l'électron et l'interprétation de la méchanique quantique,”Ann. Henri Poincaré 2, 269(1932).

    Google Scholar 

  2. L. S. Schulman,Techniques and Applications of Path Integration (Wiley, New York, 1981).

    Google Scholar 

  3. I. Fényes, “Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik,”Z. Phys. 132, 81 (1952).

    Google Scholar 

  4. E. Nelson,Phys. Rev. 150, 1079 (1966).

    Google Scholar 

  5. E. Nelson,Quantum Fluctuations (Princeton University Press, Princeton, 1985).

    Google Scholar 

  6. L. Nottale,Fractal Space-Time and Microphysics (World Scientific, Singapore, 1992).

    Google Scholar 

  7. M. S. El Naschie, “A note on quantum mechanics, diffusional interference, and informions,”Chaos, Solitons & Fractals 5 (5), 881–884 (1995).

    Google Scholar 

  8. M. El Naschie, O. E. Rossler, and I. Prigogine.Quantum Mechanics, Diffusion and Chaotic Fractals (Pergamon New York, 1995).

    Google Scholar 

  9. G. N. Ord, “The Schroedinger and diffusion propagators coexisting on a lattice,”J. Phys. A. 29, L123–128 (1996).

    Google Scholar 

  10. G. N. Ord, “The Schroedinger and Dirac free-particle equations without quantum mechanics,”Ann. Phys. (N.Y.), to appear.

  11. B. Gaveau, T. Jacobson, M. Kac, and L.S. Schulman,Phys. Rev. Lett. 53, 419 (1984).

    Google Scholar 

  12. Marc Kac, “A stochastic model related to the telegrapher's equation,”Rocky Mountain J. Math. 4 (1974).

  13. H. A. Gersch,Int. J. Theor. Phys. 20, 491–501 (1981).

    Google Scholar 

  14. T. Jacobson and L.S. Schulman,J. Phys. A 17, 375–383 (1984).

    Google Scholar 

  15. G. N. Ord “A reformulation of Feynman chessboard model,”J. Stat. Phys. 66 (2), 647–659 (1992).

    Google Scholar 

  16. G. N. Ord, “A classical analog of quantum phase,”Int. J. Theor. Phys. 31, 1177–1195 (1992).

    Google Scholar 

  17. G. N. Ord, “Quantum interference from charge conservation,”Phys. Lett. A 173, 343–346 (1993).

    Google Scholar 

  18. D.G.C. McKeon and G.N. Ord,Phys. Rev. Lett. 69, 3 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKeon, D.G.C., Ord, G.N. On how the (1+1)-dimensional Dirac equation arises in classical physics. Found Phys Lett 9, 447–456 (1996). https://doi.org/10.1007/BF02190048

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02190048

Key words

Navigation