Advertisement

Foundations of Physics Letters

, Volume 9, Issue 6, pp 505–519 | Cite as

Quantum measurement in a family of hidden-variable theories

  • Giulio Peruzzi
  • Alberto Rimini
Article

Abstract

The measurement process for hidden-configuration formulations of quantum mechanics is analysed. It is shown how a satisfactory description of quantum measurement can be given in this framework. The unified treatment of hidden-configuration theories, including Bohmian mechanics and Nelson's stochastic mechanics, helps in understanding the true reasons why the problem of quantum measurement can succesfully be solved within such theories.

Key words

quantum measurement hidden variable Bohmiam mechanics pilot-wave theory stochastic mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bohm,Phys. Rev. 85 (1952), pp. 166 and 180.Google Scholar
  2. 2.
    E. Nelson,Phys. Rev. 150 (1966), p. 1079.Google Scholar
  3. 3.
    E. Nelson,Quantum Fluctuations (Princeton University Press, Princeton, 1985).Google Scholar
  4. 4.
    M. Davidson,Lett. Math. Phys. 3, 271 (1979).Google Scholar
  5. 5.
    D. Bohm and B.J. Hiley,Phys. Rep. (Review section ofPhys. Lett.)172, 93 (1989).Google Scholar
  6. 6.
    J.S. Bell, Cern Preprint Th 1424, 1971;Epist. Lett., July 1978, p. 1.Google Scholar
  7. 7.
    J.S. Bell, inQuantum Gravity 2, C. Isham, R. Penrose, and D. Sciama, eds. (Clarendon Press, Oxford, 1981), p. 611.Google Scholar
  8. 8.
    D. Bohm and B.J. Hiley,Found. Phys. 14, 255 (1984).Google Scholar
  9. 9.
    D. Dürr, S. Goldstein, and N. Zanghì,J. Stat. Phys. 67, 843 (1992).Google Scholar
  10. 10.
    A. Rimini, inWaves and Particles in Light and Matter, A. van der Merwe and A. Garuccio, eds. (Plenum, New York, 1994), p. 603.Google Scholar
  11. 11.
    Ph. Blanchard, S. Golin, and M. Serva,Phys. Rev. D 34, 3732 (1986).Google Scholar
  12. 12.
    S. Goldstein,J. Stat. Phys. 47, 645 (1987).Google Scholar
  13. 13.
    Ph. Blanchard, M. Cini, and M. Serva, inIdeas and Methods in Quantum and Statistical Physics, S. Albeverio, ed. (Cambridge University Press, Cambridge, 1992).Google Scholar
  14. 14.
    F. Guerra, inThe Foundations of Quantum Mechanics — Historical Analysis and Open Questions, C. Garola and A. Rossi, eds. (Kluwer Academic, Dordrecht, 1995), p. 339.Google Scholar
  15. 15.
    E. Schrödinger,Naturwiss. 23, 844 (1935); English translation inProc. Am. Philos. Soc. 124, 323 (1980).Google Scholar
  16. 16.
    E.P. Wigner, inThe Scientist Speculates, I.J. Good, ed. (Basic Books, New York, 1962); reprinted in E.P. Wigner,Symmetries and Reflections (Indiana University Press, Bloomington, Indiana, 1967).Google Scholar
  17. 17.
    E. Joos and H.D. Zeh,Z. Phys. B 59, 223 (1985).Google Scholar
  18. 18.
    K. Gottfried,Quantum Mechanics (Benjamin, New York, 1966);Phys. Worlds 4 (10), 34 (1991).Google Scholar
  19. 19.
    O. Nicrosini and A. Rimini, inSymposium on the Foundations of Modern Physics 1990, P. Lahti and P. Mittelstaedt, eds. (World Scientific, Singapore, 1991), p. 280.Google Scholar
  20. 20.
    R. Griffiths,J. Stat. Phys. 36, 219 (1984).Google Scholar
  21. 21.
    R. Omnès,Rev. Mod. Phys. 64, 339 (1992).Google Scholar
  22. 22.
    M. Gell-Mann and J.B. Hartle,Phys. Rev. D 47 3345 (1993).Google Scholar
  23. 23.
    G.C. Ghirardi, A. Rimini, and T. Weber,Phys. Rev. D 34, 470 (1986);36, 3287 (1987).Google Scholar
  24. 24.
    R.P. Feynman and A.R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).Google Scholar
  25. 25.
    G.C. Ghirardi, C. Omero, A. Rimini, and T. Weber,Riv. Nuovo Cimento 1 (3), 1 (1978).Google Scholar
  26. 26.
    E.A. Carlen,Comm. Math. Phys. 94, 293 (1984).Google Scholar
  27. 27.
    K. Berndl, D. Dürr, S. Goldstein, G. Peruzzi, and N. Zanghì,Comm. Math. Phys. 173, 647 (1995).Google Scholar
  28. 28.
    T.C. Wallstrom,Phys. Rev. A 49, 1613 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Giulio Peruzzi
    • 1
  • Alberto Rimini
    • 1
  1. 1.Dipartimento di Fisica Nucleare e TeoricaUniversità di PaviaPaviaItaly

Personalised recommendations