Advertisement

aequationes mathematicae

, Volume 19, Issue 1, pp 245–299 | Cite as

Sechzehntes Internationales Symposium über Funktionalgleichungen

Reports Of Meetings
  • 20 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Reich, L. undSchwaiger, J.,Über einen Satz von Shl. Sternberg in der Theorie der analytischen Iterationen. Monatsh. Math.83 (1977), 207–231.Google Scholar
  2. [2]
    Schwaiger, J.,Eine Formel von E. Jabotinsky in der Theorie der analytischen Iterationen. Ber. math.-Stat. Sektion Forschungszentrum Graz, Ber. Nr.89 (1978).Google Scholar

References

  1. [1]
    Halmos, P. R.,A Hilbert Space Problem Book. D. van Nostrand Co., Princeton, New Jersey, 1967, p. 123 and pp. 278–279.Google Scholar
  2. [2]
    Rickart, C. E.,Banach Algebras. D. van Nostrand Co., Princeton, New Jersey, 1960.Google Scholar

Reference

  1. [1]
    Neuman, F.,On solutions of the vector functional equation y(ξ(x))=f(x) ·A · y(x). Aequationes Math.16 (1977), 245–257.Google Scholar

Reference

  1. [1]
    Aczél, J. andDaróczy, Z.,On Measures of Information and their Characterizations. Academic Press, 1975.Google Scholar

References

  1. [1]
    Eichhorn, W. andVoeller, J.,Theory of the price index. Lecture Notes in Economics and Mathematical Systems, Vol. 140, Springer-Verlag, Berlin-Heidelberg-New York, 1976.Google Scholar
  2. [2]
    Funke, H. andVoeller, J.,A note on the characterisation of Fisher's “Ideal Index.” In:Theory and Applications of Economic Indices, W. Eichhorn, R. Henn, O. Opitz, R. W. Shephard (eds.), 1978, pp. 177–182.Google Scholar
  3. [3]
    Funke, H. andVoeller, J.,A note on three reversal tests in the theory of the price index. Discussion Paper Nr. 86 of Inst. für Wirtschaftstheorie und Operations Research d. Univ. Karlsruhe, 1978.Google Scholar

Literatur

  1. [1]
    Aczél, J. andBenz, W.,Uber das harmonische Produkt und eine korrespondierende Funktionalgleichung. Abh. Math. Sem. Univ. Hamburg43 (1975), 3–10.Google Scholar

Reference

  1. [1]
    Moszner Z. andNowak, B.,A condition on an extension of the solution of the translation equation and its applications, sous presse dans Rocznik Nauk.-Dydakt. WSP Rzeszow.Google Scholar

References

  1. [1]
    Aleksandrov, A. D.,On a certain generalization of the functional equation f(x+y)=f(x)+f(y). Siber. Math. J.11 (1970), 198–209.Google Scholar
  2. [2]
    Forti, C. Borelli andForti, G. L.,Vector-valued solutions of a functional equation. Boll. Un. Mat. Ital., to appear.Google Scholar
  3. [3]
    Forti, G. L.,On the functional equation f(L+x)=f(L)+f(x). Ist. Lombardo Accad. Sci. Lett. Rend. A.111 (1977).Google Scholar
  4. [4]
    Forti, G. L.,Bounded solutions with zeros of the functional equation f(L+x)=f(L)+f(x). Boll. Un. Mat. Ital. (5)15-A(1978), 248–256.Google Scholar

References

  1. [1]
    Li, T.-Y. andYorke, J. A.,Period three implies chaos. Amer. Math. Monthly82 (1975), 985–992.Google Scholar
  2. [2]
    Nathanson, M. B.,Permutations, periodicity, and chaos. J. Combinatorial Theory Ser. A22 (1977), 61–68.Google Scholar
  3. [3]
    Šarkovskij, A. N.,Co-existence of cycles of a continuous mapping of the line into itself (Russian). Ukrain. Mat. Ž.16 (1964), 61–71.Google Scholar
  4. [4]
    Oono, Y.,Period ≠2 n implies chaos. Prog. Theor. Phys. (Letters)59 (1978), 1028–1030.Google Scholar

References

  1. [1]
    Baron, K.,On approximate solutions of a functional equation. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.23 (1975), 1065–1068.Google Scholar
  2. [2]
    Baron, K.,Functional equations of infinite order. (to appear).Google Scholar
  3. [3]
    Kuczma, M.,Functional equations in a single variable. Monografie Mat. 46, PWN, Warszawa 1968.Google Scholar

References

  1. [1]
    Targonski, Gy.,Problem P. 63. Aequationes Math.4 (1970), 395.Google Scholar
  2. [2]
    Moszner, Z.,Solutions P63 S1/S2. Aequationes Math.4 (1970), 395.Google Scholar
  3. [3]
    Drewniak, J. andKalinowski, J.,Les relations entre les équations pré-Schröder I. Ann. Polon. Math.32 (1976).Google Scholar

References

  1. [1]
    Bedingfield, N. K.,An initial value problem for a functional equation. Ph.D. thesis, Monash University and Aequationes Math., to appear.Google Scholar

References

  1. [1]
    Snow, D. R.,A generalization of Floquet's representation theorem by using a functional equation. To appear.Google Scholar

References

  1. [1]
    Targonski, Gy.,Continuous functions as countable automata. Aequationes Math.14 (1976), 210.Google Scholar
  2. [2]
    Tagronski, Gy.,Representation of functions as automata. Aequationes Math.15 (1977), 269.Google Scholar

References

  1. [1]
    Morgan, II, J. C.,On translation invariant families of sets. Colloqu. Math.34 (1975), 63–68.Google Scholar

Copyright information

© Birkhäuser Verlag 1979

Personalised recommendations