aequationes mathematicae

, Volume 19, Issue 1, pp 1–36 | Cite as

Inverse monotonicity and difference schemes of higher order. A summary for two-point boundary value problems

  • Erich Bohl
  • Jens Lorenz
Survey Papers

AMS (1970) subject classification

Primary 34A50, 65H10, 65L10 Secondary 15A48, 34B15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Bailey, P. B., Shampine, L. F., andWaltmann, P. E.,Nonlinear two point boundary value problems. Mathematics in Science and Engineering, Vol.44. Academic Press, New York-London, 1968.Google Scholar
  2. [2a]
    Beyn, W.-J.,Theorie und Anwendung eines iterativen Verfahrens zur Lösung von Operatorgleichungen Hammersteinschen Typs. PhD Thesis, University of Münster, W. Germany, 1975.Google Scholar
  3. [2b]
    Beyn, W.-J.,Das Parallelenverfahren für Operator-gleichungen und seine Anwendung auf nichtlineare Randwertaufgaben. ISNM Bd.31. Birkhäuser-Verlag, 1976, p. 9–33.Google Scholar
  4. [3a]
    Bohl, E.,Monotonie: Lösbarkeit und Numerik bei Operatorgleichungen. Springer Tracts in Natural Philosophy, Bd25, Springer-Verlag, Berlin, 1974.Google Scholar
  5. [3b]
    Bohl, E.,Stabilitätsungleichungen für diskrete Analoga nichtlinearer Randwertaufgaben. ISNM Bd.27, 9–28, Birkhäuser-Verlag, Basel und Stuttgart, 1975.Google Scholar
  6. [3c]
    Bohl, E.,On finite difference methods as applied to boundary value problems. Istituto per le Applicazioni del Calcolo (IAC), Pubb. S. III-N.100, Rome, 1975.Google Scholar
  7. [3d]
    Bohl, E.,Iterative procedures in the study of discrete analogues for nonlinear boundary value problems. Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), Pubb. S. II-N. vol.107, 1975.Google Scholar
  8. [3e]
    Bohl, E.,Zur Anwendung von Differenzenschemen mit symmetrischen Formeln bei Randwertaufgaben. ISNM Bd.32. Birkhäuser-Verlag, Basel und Stuttgart, 1976, p. 25–47.Google Scholar
  9. [3f]
    Bohl, E.,On a stability inequality for nonlinear operators. SIAM J. Numer. Anal.14 (1977), 242–252.Google Scholar
  10. [3g]
    Bohl, E.,P-boundedness of inverses of nonlinear operators Z. angew.Math. Mech. 58 (1978), 277–287.Google Scholar
  11. [4a]
    Bramble, J. H., andHubbard, B. E.,On the formulation of finite difference analogues of the Dirichlet problem for Poissons's equation. Numer. Math.4 (1962), 313–327.Google Scholar
  12. [4b]
    Bramble, J. H., andHubbard, B. E.,New monoton type approximations for elliptic problems. Math. Comput.18 (1964), 349–367.Google Scholar
  13. [4c]
    Bramble, J. H., andHubbard, B. E.,On a finite difference analogue of an elliptic boundary problem which is neither diagonally dominant nor of non-negativ type. J. Math. and Phys.43 (1964), 117–132.Google Scholar
  14. [5]
    Brandt, A.,Generalized local maximum principles for finite-difference operators. Math. Comput.27 (1973), 685–718.Google Scholar
  15. [6]
    Ciarlet, P.,Discrete maximum principle for finite difference operators. Acta Math.4 (1970) 338–352.Google Scholar
  16. [7a]
    Collatz, L.,Bemerkungen zur Fehlerabschätzung für das Differenzenverfahren bei partiellen Differentialgleichungen. Z. Angew. Math. Mech.13 (1933) 56–57.Google Scholar
  17. [7b]
    Collatz, L.,Das Differenzenverfahren mit höherer Approximation für lineare Differentialgleichungen. Schr. Math. Sem. u. Inst. Angew. Math. Univ. Berlin3 (1935), 1–34.Google Scholar
  18. [7c]
    Collatz, L.,The Numerical treatment of differential equations. Springer-Verlag, Berlin-Heidelberg-New York, 1964.Google Scholar
  19. [8]
    Esser, L.-H.,Über Konvergenzordnungen diskreter Approximationen. Habilitationsschrift, TH Aachen, 1974.Google Scholar
  20. [9]
    Gerschgorin, S.,Fehlerabschätzung für das Differenzenverfahren zur Lösung partieller Differentialgleichungen. Z. Angew. Math. Mech.10 (1930), 373–382.Google Scholar
  21. [10]
    Henrici, P.,Discrete variable methods in ordinary differential equations. John Wiley & Sons, New York-London, 1962.Google Scholar
  22. [11]
    Isaacson, E., andKeller, H. B.,Analysis of numerical methods. John Wiley & Sons, New York-London-Sydney, 1966.Google Scholar
  23. [12]
    Keller, H. B.,Numerical methods for two-point boundary-value problems. Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1968.Google Scholar
  24. [13a]
    Lees, M.,A boundary value problem for nonlinear ordinary differential equations. J. Math. Mech.10 (1961), 423–430.Google Scholar
  25. [13b]
    Lees, M.,Discrete methods for nonlinear two-point boundary value problems. In: Numerical solution of partial differential equations, (Proc. Sympos. Univ. Maryland, 1975), Academic Press, New York, 1966, p. 59–72.Google Scholar
  26. [14a]
    Lorenz, J.,Die Inversmonotonie von Matrizen und ihre Anwendung beim Stabilitätsnachweis von Differenzenverfahren. PHD Thesis, University of Münster, W. Germany, 1975.Google Scholar
  27. [14b]
    Lorenz, J.,Zur Inversmonotonie diskreter Probleme. Numer. Math.27 (1977), 227–238.Google Scholar
  28. [15]
    Ortega, J. M., andRheinboldt, W. C.,Iterative solution of nonlinear equations in several variables. Academic Press, New York, 1970.Google Scholar
  29. [16]
    Price, H. S.,Monoton and oscillation matrices applied to finite difference approximations. Math. Comput.22 (1968), 489–516.Google Scholar
  30. [17]
    Schröder, J.,Lineare Operatoren mit positiver Inversen. Arch. Rational Mech. Anal.8 (1961), 408–434.Google Scholar
  31. [18]
    Shoosmith, J. N.,A high-order finite-difference method for the solution of two-point boundary-value problems on a uniform mesh. In:Numerical solution of boundary value problems for ordinary differential equations (A. K. Aziz, ed.), New York, 1975, p. 335–369.Google Scholar
  32. [19]
    Varga, R. S.,Matrix iterative analysis. Prentice-Hall, Englewood Cliffs, N. J., 1962.Google Scholar

Copyright information

© Birkhäuser Verlag 1979

Authors and Affiliations

  • Erich Bohl
    • 1
  • Jens Lorenz
    • 1
  1. 1.Fachbereich MathematikUniversität MünserMünsterWest Germany

Personalised recommendations