Skip to main content

Almost periodicity and functional equations

This is a preview of subscription content, access via your institution.

References

  1. Aczél, J.,Lectures on functional equations and their applications. Academic Press, New York-London, 1966.

    Google Scholar 

  2. Albert, M. andBaker, J.A.,Functions with bounded m-th differences. Unpublished.

  3. Baker, J., Lawrence, J. andZorzitto, F.,The stability of the equation f(x + y) = f(x)f(y). Proc. Amer. Math. Soc.74 (1979), 242–246.

    Google Scholar 

  4. De Bruijn, N. G.,Functions whose differences belong to a given class. Nieuw. Arch. Wisk.23 (1951), 194–218.

    Google Scholar 

  5. Djokovic, D. Z.,A representation theorem for (X 1 − 1) (X 2 − 1)... (X n − 1) and its applications. Ann. Polon. Math.22 (1969), 189–198.

    Google Scholar 

  6. Doss, R.,On bounded functions with almost periodic differences. Proc. Amer. Math. Soc.12 (1961), 488–489.

    Google Scholar 

  7. Edgar, G. A. andRosenblatt, J. M.,Difference equations over locally compact abelian groups. Trans. Amer. Math. Soc.253 (1979), 273–289.

    Google Scholar 

  8. Hewitt, E. andRoss, K.,Abstract harmonic analysis. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.

    Google Scholar 

  9. Hyers, D. H.,On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A.27 (1941), 222–224.

    Google Scholar 

  10. Kahane, J. P.,Lectures on mean periodic functions. Tata Institute, Bombay, 1959.

    Google Scholar 

  11. Kannappan, Pl.,The functional equation f(xy) + f(xy − 1) = 2f(x)f(y) for groups. Proc. Amer. Math. Soc.19 (1968), 69–74.

    Google Scholar 

  12. Maak, W.,Fastperiodische Functionen. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1950.

    Google Scholar 

  13. O'Connnor, T. A.,A solution of d'Alembert's functional equation on a locally compact abelian group. Aequationes Math.15 (1977), 235–238.

    Google Scholar 

  14. O'Connor, T. A.,A solution of the functional equation φ(x − y) = Σ n1 a1(x)ā1 (y) on a locally compact abelian group. J. Math. Anal. Appl.60 (1977), 120–122.

    Google Scholar 

  15. Székelyhidi, L.,Almost periodic functions and functional equations. Acta Sci. Math. (Szeged)42 (1980), 165–169.

    Google Scholar 

  16. Székelyhidi, L.,The stability of linear functional equations. C.R. Math. Rep. Acad. Sci. Canada3 (1981), 63–67.

    Google Scholar 

  17. Székelyhidi, L.,On a theorem of Baker, Lawrence and Zorzitto. Proc. Amer. Math. Soc.84 (1982), 95–96.

    Google Scholar 

  18. Székelyhidi, L.,Note on a stability theorem. Canad. Math. Bull.25,4 (1982), 500–501.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Székelyhidi, L. Almost periodicity and functional equations. Aeq. Math. 26, 163–175 (1983). https://doi.org/10.1007/BF02189679

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02189679

AMS (1980) subject classification