This is a preview of subscription content, access via your institution.
References
Aczél, J.,Lectures on functional equations and their applications. Academic Press, New York-London, 1966.
Albert, M. andBaker, J.A.,Functions with bounded m-th differences. Unpublished.
Baker, J., Lawrence, J. andZorzitto, F.,The stability of the equation f(x + y) = f(x)f(y). Proc. Amer. Math. Soc.74 (1979), 242–246.
De Bruijn, N. G.,Functions whose differences belong to a given class. Nieuw. Arch. Wisk.23 (1951), 194–218.
Djokovic, D. Z.,A representation theorem for (X 1 − 1) (X 2 − 1)... (X n − 1) and its applications. Ann. Polon. Math.22 (1969), 189–198.
Doss, R.,On bounded functions with almost periodic differences. Proc. Amer. Math. Soc.12 (1961), 488–489.
Edgar, G. A. andRosenblatt, J. M.,Difference equations over locally compact abelian groups. Trans. Amer. Math. Soc.253 (1979), 273–289.
Hewitt, E. andRoss, K.,Abstract harmonic analysis. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
Hyers, D. H.,On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A.27 (1941), 222–224.
Kahane, J. P.,Lectures on mean periodic functions. Tata Institute, Bombay, 1959.
Kannappan, Pl.,The functional equation f(xy) + f(xy − 1) = 2f(x)f(y) for groups. Proc. Amer. Math. Soc.19 (1968), 69–74.
Maak, W.,Fastperiodische Functionen. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1950.
O'Connnor, T. A.,A solution of d'Alembert's functional equation on a locally compact abelian group. Aequationes Math.15 (1977), 235–238.
O'Connor, T. A.,A solution of the functional equation φ(x − y) = Σ n1 a1(x)ā1 (y) on a locally compact abelian group. J. Math. Anal. Appl.60 (1977), 120–122.
Székelyhidi, L.,Almost periodic functions and functional equations. Acta Sci. Math. (Szeged)42 (1980), 165–169.
Székelyhidi, L.,The stability of linear functional equations. C.R. Math. Rep. Acad. Sci. Canada3 (1981), 63–67.
Székelyhidi, L.,On a theorem of Baker, Lawrence and Zorzitto. Proc. Amer. Math. Soc.84 (1982), 95–96.
Székelyhidi, L.,Note on a stability theorem. Canad. Math. Bull.25,4 (1982), 500–501.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Székelyhidi, L. Almost periodicity and functional equations. Aeq. Math. 26, 163–175 (1983). https://doi.org/10.1007/BF02189679
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02189679