aequationes mathematicae

, Volume 26, Issue 1, pp 163–175 | Cite as

Almost periodicity and functional equations

  • L. Székelyhidi
Research Papers

AMS (1980) subject classification

Primary 39B30 Secondary 43A60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aczél, J.,Lectures on functional equations and their applications. Academic Press, New York-London, 1966.Google Scholar
  2. [2]
    Albert, M. andBaker, J.A.,Functions with bounded m-th differences. Unpublished.Google Scholar
  3. [3]
    Baker, J., Lawrence, J. andZorzitto, F.,The stability of the equation f(x + y) = f(x)f(y). Proc. Amer. Math. Soc.74 (1979), 242–246.Google Scholar
  4. [4]
    De Bruijn, N. G.,Functions whose differences belong to a given class. Nieuw. Arch. Wisk.23 (1951), 194–218.Google Scholar
  5. [5]
    Djokovic, D. Z.,A representation theorem for (X 1 − 1) (X 2 − 1)... (X n − 1) and its applications. Ann. Polon. Math.22 (1969), 189–198.Google Scholar
  6. [6]
    Doss, R.,On bounded functions with almost periodic differences. Proc. Amer. Math. Soc.12 (1961), 488–489.Google Scholar
  7. [7]
    Edgar, G. A. andRosenblatt, J. M.,Difference equations over locally compact abelian groups. Trans. Amer. Math. Soc.253 (1979), 273–289.Google Scholar
  8. [8]
    Hewitt, E. andRoss, K.,Abstract harmonic analysis. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.Google Scholar
  9. [9]
    Hyers, D. H.,On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A.27 (1941), 222–224.Google Scholar
  10. [10]
    Kahane, J. P.,Lectures on mean periodic functions. Tata Institute, Bombay, 1959.Google Scholar
  11. [11]
    Kannappan, Pl.,The functional equation f(xy) + f(xy − 1) = 2f(x)f(y) for groups. Proc. Amer. Math. Soc.19 (1968), 69–74.Google Scholar
  12. [12]
    Maak, W.,Fastperiodische Functionen. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1950.Google Scholar
  13. [13]
    O'Connnor, T. A.,A solution of d'Alembert's functional equation on a locally compact abelian group. Aequationes Math.15 (1977), 235–238.Google Scholar
  14. [14]
    O'Connor, T. A.,A solution of the functional equation φ(x − y) = Σ 1n a1(x)ā1 (y) on a locally compact abelian group. J. Math. Anal. Appl.60 (1977), 120–122.Google Scholar
  15. [15]
    Székelyhidi, L.,Almost periodic functions and functional equations. Acta Sci. Math. (Szeged)42 (1980), 165–169.Google Scholar
  16. [16]
    Székelyhidi, L.,The stability of linear functional equations. C.R. Math. Rep. Acad. Sci. Canada3 (1981), 63–67.Google Scholar
  17. [17]
    Székelyhidi, L.,On a theorem of Baker, Lawrence and Zorzitto. Proc. Amer. Math. Soc.84 (1982), 95–96.Google Scholar
  18. [18]
    Székelyhidi, L.,Note on a stability theorem. Canad. Math. Bull.25,4 (1982), 500–501.Google Scholar

Copyright information

© Birkhäuser Verlag 1983

Authors and Affiliations

  • L. Székelyhidi
    • 1
  1. 1.Department of MathematicsKossuth Lajos UniversityDebrecenHungary

Personalised recommendations