aequationes mathematicae

, Volume 21, Issue 1, pp 142–155 | Cite as

Solution of a class of quasilinear Dirichlet and Neumann problems by the method of reduction

  • John E. Lavery
Research Papers

AMS (1970) subject classification

Primary 65N99 Secondary 35J60, 49015, 65N30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chung, T. J.,Convergence and stability of nonlinear finite element equations. AIAA J.13 (1975), 963–966.Google Scholar
  2. [2]
    Fučik, S., Kratochvíl, A. andNečas, J.,Kačanov-Galerkin method and its application. In:Proc. of Third Conf. on Basic Problems of Numerical Mathematics (Prague, 1973). Acta Univ. Carolinae-Math. et Phys.15 (1974), 31–33.Google Scholar
  3. [3]
    Kantorovich, L. V. andKrylov, V. I.,Approximate methods of higher analysis. Interscience, New York, 1964.Google Scholar
  4. [4]
    Lapin, A. V.,A study of the convergence of difference schemes in the norm W 2(2) for quasilinear elliptic equations. USSR Computational Math. and Math. Phys.14 (1974), No. 6, 140–149 (1975).Google Scholar
  5. [5]
    Lavery, John E.,Solution of a class of quasilinear Dirichlet and Neumann problems by the method of moments with a posteriori error bounds. X-814-73-29, NASA Goddard Space Flight Center, Greenbelt, Maryland, January 1973.Google Scholar
  6. [6]
    Lavery, John E.,Solution of inhomogeneous quasilinear Dirichlet and Neumann problems by reduction to the Poisson equation and a posteriori error bounds. J. Reine Angew. Math.299/300 (1978), 73–79.Google Scholar
  7. [7]
    Taufer, Jiří,On factorization method. Apl. Mat.11 (1966), 427–451.Google Scholar
  8. [8]
    Vertgeim, B. A.,On certain methods of approximate solution of non-linear functional equations in Banach spaces (Russian). Uspehi Mat. Nauk12 (1957), 166–169.Google Scholar

Copyright information

© Birkhäuser Verlag 1980

Authors and Affiliations

  • John E. Lavery
    • 1
  1. 1.Soochow UniversityTaipeiTaiwan 111, Republic of China (Formosa)

Personalised recommendations