aequationes mathematicae

, Volume 21, Issue 1, pp 121–128 | Cite as

Hosszú's functional equation over rings generated by their units

  • T. M. K. Davison
  • Lothar Redlin
Research Papers

AMS (1970) subject classification

Primary 39A40 Secondary 12A45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Blanuša, D.,The functional equation f(x+y−xy)+f(xy)=f(x)+f(y). Aequationes Math5 (1970), 63–67.Google Scholar
  2. [2]
    Daróczy, Z.,On the general solution of the functional equation f(x+y−xy)+f(xy)=f(x)+f(y). Aequationes Math.6 (1971), 130–132.Google Scholar
  3. [3]
    Davison, T. M. K.,On the functional equation f(m+n−mn)+f(mn)=f(m)+f(n). Aequationes Math.10 (1974), 206–211.Google Scholar
  4. [4]
    Davison, T. M. K.,The complete solution of Hosszú's functional equation over a field. Aequationes Math.11 (1974), 273–276.Google Scholar
  5. [5]
    Davison, T. M. K.,On Hosszú's functional equation. Preprint, University of Warwick, Coventry, England, 1976.Google Scholar
  6. [6]
    Fenyö, I.,On the general solution of a functional equation in the domain of distributions. Aequationes Math.3 (1969), 236–246.Google Scholar
  7. [7]
    Światak, H.,A proof of the equivalence of the equation f(x+y-xy)+f(xy)=f(x)+f(y) and Jensen's functional equation. Aequationes Math.6 (1971), 24–29.Google Scholar
  8. [8]
    Weiss, E.,Algebraic Number Theory. McGraw-Hill, New York, 1963.Google Scholar

Copyright information

© Birkhäuser Verlag 1980

Authors and Affiliations

  • T. M. K. Davison
    • 1
    • 2
  • Lothar Redlin
    • 1
    • 2
  1. 1.Department of MathematicsMcMaster UniversityHamiltonCanada
  2. 2.Department of Pure MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations