Advertisement

aequationes mathematicae

, Volume 21, Issue 1, pp 98–104 | Cite as

A reconsideration of the ‘three squares’ problem

  • P. G. Laird
Research Papers

AMS (1970) subject classification

Primary 39A15, 44A35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Berenstein, C. A. andTaylor, B. A.,The ‘three-squares’ theorem for continuous functions. Arch. Rational Mech. Anal.63 (1977), 253–259.Google Scholar
  2. [2]
    Brown, L., Schreiber, B. M. andTaylor, B. A.,Spectral synthesis and the Pompeiu problem. Ann. Inst. Fourier23 (1973), 125–154.Google Scholar
  3. [3]
    Delsarte, J.,Sur quelques difficultiés arithmétiques qui peuvent se présenter dans la résolution numérique de certains problèmes aux limites. Oeuvres de Jean Delsarte, Centre National de la Recherche Scientifique, Paris, 1971, pp. 715–722, Tome II.Google Scholar
  4. [4]
    Gel'fand, I. M. andShilov, G. E.,Generalized functions. Vol.1, Acadamic Press, New York, 1964.Google Scholar
  5. [5]
    Gurevich, D. I.,Counterexamples to a problem of L. Schwartz. Functional Anal. Appl.197 (1975), 116–120.Google Scholar
  6. [6]
    Haruki, H.,On the functional equation f(x+t, y)+f(xt, y)=f(x, y+t)+f(x, yt). Aequationes Math.5 (1970), 118–119.Google Scholar
  7. [7]
    Schwartz, L.,Théorie générale des fonctions moyennepériodiques. Ann. of Math.48 (1947), 857–929.Google Scholar
  8. [8]
    Zalcman, L.,Analyticity and the Pompeiu problem. Arch. Rational Mech. Anal.47 (1972), 237–254.Google Scholar
  9. [9]
    Zalcman, L.,Mean values and differential equations. Israel J. Math.14 (1973), 339–352.Google Scholar

Copyright information

© Birkhäuser Verlag 1980

Authors and Affiliations

  • P. G. Laird
    • 1
  1. 1.Department of MathematicsUniversity of WollongongWollongongAustralia

Personalised recommendations