aequationes mathematicae

, Volume 21, Issue 1, pp 49–52 | Cite as

Note on the equation\(\left( {\mathop {\Delta ^2 }\limits_{x,t} - \mathop {\Delta ^2 }\limits_{y,t} } \right)f = 0\)

  • Shigeru Haruki
Research Papers

AMS (1970) subject classification

Primary 39A25 Secondary 39A30, 39A40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aczél, J.,The general solution of two functional equations by reduction to functional equations in two variables and with the aid of Hamel bases. Glasnik Mat.-Fiz. Astronom. Drustvo Mat. Fiz. Hrvatske [2]20 (1965), 65–73.Google Scholar
  2. [2]
    Baker, J. A.,An analogue of the wave equation and certain related functional equations. Canad. Math. Bull.12 (1969), 837–846.Google Scholar
  3. [3]
    Cartan, H.,Differential calculus. Houghton Mifflin Co., Boston, 1971.Google Scholar
  4. [4]
    Girod, D.,On the functional equation \(\Delta _{T_1 y} \Delta _{T_2 y} f = 0\). Aequationes Math.9 (1973), 157–164.Google Scholar
  5. [5]
    Hille, E. andPhillips, R. S.,Functional analysis and semi-groups. Amer. Math. Soc. Colloquium Publications, Vol.XXXI, Amer. Math. Soc., Providence, R.I., 1957.Google Scholar
  6. [6]
    Kemperman, J. H. B.,A general functional equation. Trans. Amer. Math. Soc.86 (1957), 28–56.Google Scholar
  7. [7]
    Mazur, S. andOrlicz, W.,Grundlegende Eigenschaften der polynomischen Operationen. Studia Math.5 (1934), 50–68.Google Scholar
  8. [8]
    McKiernan, M. A.,On vanishing nth ordered differences and Hamel basis. Ann. Polon. Math.19 (1967), 331–336.Google Scholar
  9. [9]
    McKiernan, M. A.,The general solution of some finite difference equations analogous to the wave equation. Aequationes Math.8 (1972), 263–266.Google Scholar

Copyright information

© Birkhäuser Verlag 1980

Authors and Affiliations

  • Shigeru Haruki
    • 1
  1. 1.Department of Pure MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations