Journal of Statistical Physics

, Volume 82, Issue 1–2, pp 31–49 | Cite as

The vertex formulation of the Bazhanov-Baxter model

  • S. M. Sergeev
  • V. V. Mangazeev
  • Yu. G. Stroganov


In this paper we formulate an integrable model on the simple cubic lattice. TheN-valued spin variables of the model belong to edges of the lattice. The Boltzmann weights of the model obey the vertex-type tetrahedron equation. In the thermodynamic limit our model is equivalent to the Bazhanov-Baxter model. In the case whenN=2 we reproduce Korepanov's and Hietarinta's solutions of the tetrahedron equation as special cases.

Key Words

Tetrahedron equation Zamolodchikov model Fermat curve spherical geometry symmetry properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. Zamolodchikov,Commun. Math. Phys. 79:489 (1981).CrossRefGoogle Scholar
  2. 2.
    V. V. Bazhanov and Yu. G. Stroganov,Teor. Mat. Fiz. 52:105 (1982) [English transl.:Theor. Math. Phys. 52:685 (1982)].Google Scholar
  3. 3.
    M. T. Jaekel and J. M. Maillard,J. Phys. A 15:1309 (1982).CrossRefGoogle Scholar
  4. 4.
    I. G. Korepanov, New solutions for the tetrahedron equations, Presented at the VINITI, March 21, 1989, n. 1751-v89 [in Russian]; I. G. Korepanov,Commun. Math. Phys. 154:85 (1993).Google Scholar
  5. 5.
    J. Hietarinta,J. Phys. A: Math. Gen. 27:5727–5748 (1994).CrossRefGoogle Scholar
  6. 6.
    V. V. Mangazeev, S. M. Sergeev, and Yu. G. Stroganov, Preprint IHEP 94-106 (hep-th/9410069);Int. J. Mod. Phys., to appear.Google Scholar
  7. 7.
    V. V. Bazhanov and R. J. Baxter,J. Stat. Phys. 69:453–485 (1992).CrossRefGoogle Scholar
  8. 8.
    R. M. Kashaev, V. V. Mangazeev, and Yu. G. Stroganov,Int. J. Mod. Phys. A 8:587–601 (1993).CrossRefGoogle Scholar
  9. 9.
    R. J. Baxter,Commun. Math. Phys. 88:185–205 (1983).CrossRefGoogle Scholar
  10. 10.
    V. V. Bazhanov,Int. J. Mod. Phys. B 7:3501–3515 (1993).CrossRefGoogle Scholar
  11. 11.
    R. M. Kashaev, V. V. Mangazeev, and Yu. G. Stroganov,Int. J. Mod. Phys. A 8: 1399–1409 (1993).CrossRefGoogle Scholar
  12. 12.
    V. V. Bazhanov, R. M. Kashaev, V. V. Mangazeev, and Yu. G. Stroganov,Commun. Math. Phys. 138:393 (1991).CrossRefGoogle Scholar
  13. 13.
    V. V. Bazhanov and R. J. Baxter,J. Stat. Phys. 71:839–864 (1993).CrossRefGoogle Scholar
  14. 14.
    H. Au-Yang, B. M. McCoy, J. H. H. Perk, S. Tang, and M. Jan,Phys. Lett A 123:219 (1987).CrossRefGoogle Scholar
  15. 15.
    R. J. Baxter, J. H. H. Perk, and H. Au-Yang,Phys. Lett. A 128:138 (1988).CrossRefGoogle Scholar
  16. 16.
    H. Au-Yang and J. H. H. Perk,Adv. Stud. Pure Math. 19:57 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • S. M. Sergeev
    • 1
  • V. V. Mangazeev
    • 2
  • Yu. G. Stroganov
    • 3
  1. 1.Branch Institute for Nuclear PhysicsInstitute for High Energy PhysicsProtvinoRussia
  2. 2.Department of Theoretical Physics, RSPhysSEAustralian National UniversityCanberraAustralia
  3. 3.Institute for High Energy PhysicsProtvinoRussia

Personalised recommendations