Skip to main content
Log in

The molecular significance of amyloid β-peptide for Alzheimer's disease

  • Neurobiological Substrates of Clinical Deficits in Alzheimer's Disease
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer's disease is the most common form of dementia. Although the majority of the cases occur sporadically, in some rare cases Alzheimer's disease is genetically inherited. Pathologically, Alzheimer's disease is characterized by the accumulation of senile plaques within the extracellular space of brain regions known to be important for intellectual functions. In addition to senile plaques, deposits of identical biochemical composition are found in the walls of meningeal and cerebral blood vessels. Senile plaques are surrounded by degenerating neurons indicating a toxic interference of amyloid plaques with neurons. The major component of senile plaques is the 4 kDa amyloid β-peptide. This peptide has been shown to exhibit neurotoxic properties when added to cultured neurons, or injected into rat brains. Amyloid β-peptide is derived from a high molecular weight precursor, the β-amyloid precursor protein, by proteolytic processing. Mutations responsible for the early onset of Alzheimer's disease in some families are found within the gene coding for the β-amyloid precursor protein. These mutations strongly influence the generation of amyloid β-peptide resulting in a significant overproduction of the peptide or the generation of elongated forms which are known to aggregate and precipitate much faster. Moreover, mutations found in other genes known to cause early onset of Alzheimer's disease have been shown to interfere directly with the production or precipitation of amyloid β-peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Busciglio J, Gabuzda DH, Matsudaira P, Yankner BA (1993) Generation of β-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 90:2092–2096

    Google Scholar 

  • Busciglio J, Lorenzo A, Yeh J, Yankner BA (1995) β-amyloid fibrils induce tau phosphorylation and loss of microtubule bindings. Neuron 14:879–888

    Google Scholar 

  • Cai X, Golde T, Younkin S (1993) Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259:514–516

    Google Scholar 

  • Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J, Mullan M (1991) Early-onset Alzheimer's disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature 353:844–846

    Google Scholar 

  • Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases β-protein production. Nature 360:672–674

    Google Scholar 

  • Citron M, Vigo-Pelfrey C, Teplow DB, Miller C, Schenk D, Johnston J, Winblad B, Venizelos N, Lannfelt L, Selkoe DJ (1994) Excessive production of amyloid β-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. Proc Natl Acad Sci USA 91:11993–11997

    Google Scholar 

  • Citron M, Teplow DB, Selkoe DJ (1995) Generation of amyloid β protein from its precursor is sequence specific. Neuron 14:661–670

    Google Scholar 

  • Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC, Rimmler JP, Locke PA, Conneally PM, Schmader KE, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nature Genet 7:180–183

    Google Scholar 

  • Dyrks T, Weidemann A, Multhaup G, Salbaum JM, Lemaire HG, Kang J, Müller-Hill B, Basters CL, Beyreuther K (1988) Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer's disease. EMBO J 7:949–957

    Google Scholar 

  • Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D, Ward P (1990) Cleavage of amyloid β-peptide during constitutive processing of its precursor. Science 248:1122–1124

    Google Scholar 

  • Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, Janes L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349:704–706

    Google Scholar 

  • George-Hyslop P St., Haines J, Rogaev E, Mortilla M, Vaula G, Pericak-Vance M, Foncin J-F, Montesi M, Bruni A, Sorbi S, Rainero I, Pinessi L, Pollen D, Polinsky R, Nee L, Kennedy J, Macciardi F, Rogaeva E, Liang Y, Alexandrova N, Lukiw W, Schlumpf K, Tanzi R, Tsuda T, Farrer L, Cantu JM, Duara R, Amaducci L, Bergamini L, Gusella J, Roses A, Crapper McLachlan D (1992) Genetic evidence for a novel familial Alzheimer's disease locus on chromosome 14. Nature Genet 2:330–334

    Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular and amyloid protein. Biochem Biophys Res Commun 120:885–890

    Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein T (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4813–4917

    Google Scholar 

  • Haass C, Hung AY, Schlossmacher MG, Teplow DB, Selkoe DJ (1993) β-amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J Biol Chem 268:3021–3024

    Google Scholar 

  • Haass C, Hung AY, Selkoe DJ, Teplow DB (1994) Mutations associated with a locus for familial Alzheimer's disease result in alternative processing of amyloid β-amyloid protein precursor. J Biol Chem 269:17741–17748

    Google Scholar 

  • Haass C, Koo EH, Mellon A, Hung AY, Selkoe DJ (1992a) Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357:500–503

    Google Scholar 

  • Haass C, Selkoe DJ (1993) Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell 75:1039–1042

    Google Scholar 

  • Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski B, Lieberburg I, Koo E, Schenk D, Teplow D, Selkoe DJ (1992b) Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325

    Google Scholar 

  • Haass C, Lemere CA, Capell A, Citron M, Seubert P, Schenk D, Lannfelt L, Selkoe DJ (1995) The Swedish mutation causes early onset Alzheimer's disease by β-secretase cleavage within the secretory pathway. Nature Medicine 1:1291–1296

    Google Scholar 

  • Hendriks L, Duijn CM van, Cras P, Cruts M, Van Hul W, Harskamp F van, Warren A, McInnis MG, Antonarakis SE, Martin JJ, Hofman A, Van Broeckhoven C (1992) Presenile dementia and cerebral haemorrhage linked to a mutation at cordon 692 of the β-amyloid precursor gene. Nature Genet 1:218–221

    Google Scholar 

  • Jarrett J, Lansbury P (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and Scrapie? Cell 73:1055–1058

    Google Scholar 

  • Kang J, Lemaire H, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H, Multhaup G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer's disease amyloid A4-protein resembles a cell-surface receptor. Nature 325:733–736

    Google Scholar 

  • Koo EH, Squazzo S (1994) Evidence that production and release of amyloid β-protein involves the endocytic pathway. J Biol Chem 269:17386–17389

    Google Scholar 

  • Kowall NW, Flint Beal M, Busciglio J, Duffy LR, Yankner BA (1991) An in vivo model for the neurodegenerative effects of β amyloid and protection by substance. P Proc Natl Acad Sci USA 88:7247–7251

    Google Scholar 

  • LaDu MJ, Falduto MT, Manelli AM, Reardon CA, Getz GS, Frail DE (1994) Isoform-specific binding of apolipoprotein E to β-amyloid. J Biol Chem 269:23403–23406

    Google Scholar 

  • LaDu MJ, Pederson TM, Frai DE, Reardon CA, Getz GS, Falduto MT (1995) Purification of apolipoprotein E attenuates isoformspecific binding to β-amyloid. J Biol Chem 270:9039–9042

    Google Scholar 

  • Lorenzo A, Yankner BA (1994) β-Amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci USA 91:12243–12247

    Google Scholar 

  • Lorenzo A, Razzaboni B, Weir GC, Yankner BA (1994) Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 368:756–760

    Google Scholar 

  • Ma J, Yee A, Bryan-Brewer H Jr, Potter H (1994) Amyloid associated proteins αI-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments. Nature 372:92–94

    Google Scholar 

  • Mullan M, Crawford F (1993) Genetic and molecular advances in Alzheimer's disease. Trends Neurosci 16:398–403

    Google Scholar 

  • Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L (1992) A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of β-amyloid. Nature Genet 1:345–347

    Google Scholar 

  • Murrel J, Farlow M, Ghetti B, Benson MD (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science 254:97–99

    Google Scholar 

  • Oltersdorf T, Ward P, Henriksson T, Beattie E, Neve R, Lieberburg I, Fitz I (1990) The Alzheimer amyloid precursor protein. Identification of a stable intermediate in the biosynthetic/degradative pathway. J Biol Chem 265:4492–4497

    Google Scholar 

  • Rebeck GW, Reiter JS, Strickland DK, Hyman BT (1993) Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions. Neuron 11:1–6

    Google Scholar 

  • Roses AD (1994) Apolipoprotein E affects the rate of Alzheimer disease expression: β-amyloid burden is a secondary consequence dependent on apo E genotype and duration of disease. J Neuropathol Ex Neurol 53:429–437

    Google Scholar 

  • Sanan DA, Weisgraber KH, Russell SJ, Mahley RW, Huang D, Saunders A, Schmechel D, Wisniewski T, Frangione B, Roses AD, Strittmatter WJ (1994) Apolipoprotein E associates with β-amyloid peptide of Alzheimer's disease to form novel monofibrils. J Clin Invest 94:860–869

    Google Scholar 

  • Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, White JA, Bonnycastle L, Weber JL, Alonos ME, Potter H, Heston LL, Martin GM (1992) Genetic linkage evidence for a familial Alzheimer disease locus on chromosome 14. Science 258:1–4

    Google Scholar 

  • Selkoe DJ (1991) The molecular pathology of Alzheimer's disease. Neuron 6:487–498

    Google Scholar 

  • Selkoe DJ (1994a) Amyloid β-protein precursor: new clues to the genesis of Alzheimer's disease. Curr Opin Neurobiol 4:708–716

    Google Scholar 

  • Selkoe DJ (1994b) Cell biology of the amyloid β-protein precursor and the mechanism of Alzheimer's disease. Annu Rev Cell Biol 10:373–403

    Google Scholar 

  • Selkoe DJ (1994c) Normal and abnormal biology of the β-amyloid precursor protein. Annu Rev Neurosci 17:489–517

    Google Scholar 

  • Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Schwindelhurst C, McCormack R, Wolfert R, Selkoe DJ, Lieberburg I, Schenk D (1992) Isolation and quantitation of soluble Alzheimer's β-peptide from biological fluids. Nature 359:325–327

    Google Scholar 

  • Seubert P, Oltersdorf T, Lee MG, Barbour R, Blomquist C, Davis D, Bryant K, Fritz C, Galasko D, Thal L, Lieberburg I, Schenk D (1993) Secretion of β-amyloid precursor protein cleaved at the amino-terminus of β-amyloid peptide. Nature 361:260–262

    Google Scholar 

  • Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin J-F, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HAR, Haines JL, Pericak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St. George-Hyslop P (1995) Cloning of a gene bearing missense mutations in early-onset Alzheimer's disease. Nature 375:754–760

    Google Scholar 

  • Shoji M, Golde TE, Ghiso J, Cheung T, Estus S, Shaffer L, Cai X, McKay D, Tinter R, Frangione B, Younkin S (1992) Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258:126–129

    Google Scholar 

  • Strittmatter WJ, Roses AD (1995) Apolipoprotein E and Alzheimer disease. Proc Natl Acad Sci USA 92:4725–4727

    Google Scholar 

  • Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high avidity binding to β-amyloid and increased frequency of type-4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981

    Google Scholar 

  • Strittmatter WJ, Weisgraber KH, Goedert M, Saunders AM, Huang D, Corder EH, Dong LM, Jake R, Alberts MJ, Gilbert JD, Han SH, Hulette C, Einstein G, Schmecjel DE, Pericak-Vance MA, Roses AD (1994) Hypothesis: microtubule instability and paired helical filament formation in the Alzheimer disease brain are related to apolipoprotein E genotype. Exp Neurol 125:163–171

    Google Scholar 

  • Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos L Jr, Eckamn C, Golde TER, Younkin SG (1994) An increased percentage of long amyloid β-protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 264:1336–1340

    Google Scholar 

  • Ueda K, Masliah E, Saitoh T, Bakalis SL, Scoble H, Kosik KS (1990) Alz-50 recognizes a phosphorylated epitope of tau protein. Neuroscience 10:3295–3304

    Google Scholar 

  • Weidemann A, König G, Bunke D, Fischer P, Masters CL, Beyreuther K (1989) Identification, biogenesis and localization of precursors of Alzheimer's diseae A4 amyloid protein. Cell 57:115–126

    Google Scholar 

  • Wisniewski T, Golabek A, Matsubara E, Ghiso J, Frangione B (1993) Apolipoprotein E: binding to soluble Alzheimer's β-amyloid. Biochem Biophys Res Commun 192:359–365

    Google Scholar 

  • Yamazaki T, Selkoe DJ, Koo EH (1995) Trafficking of cell-surface β-amyloid precursor protein: retrogate and transcytotic transport in cultured neurons. J Cell Biol 129:431–442

    Google Scholar 

  • Yankner B, Duffy L, Kirschner D (1990) Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 250:279–282

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haass, C. The molecular significance of amyloid β-peptide for Alzheimer's disease. Eur Arch Psychiatry Clin Nuerosci 246, 118–123 (1996). https://doi.org/10.1007/BF02189111

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02189111

Key words

Navigation