Some Ramsey-Turán type results for hypergraphs


To everyk-graphG letπ(G) be the minimal real numberπ such that for everyε>0 andn>n 0(ε,G) everyk-graphH withn vertices and more than (π+ε) (\(\left( {\pi + \varepsilon } \right)\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)\)) edges contains a copy ofG. The real numberϱ (G) is defined in the same way adding the constraint that all independent sets of vertices inH have sizeo(n). Answering a problem of Erdős and Sós it is shown that there exist infinitely manyk-graphs with 0<ϱ(G)<π(G) for everyk≧3. It is worth noting that we were unable to find a singleG with the above property.

This is a preview of subscription content, access via your institution.


  1. [1]

    B. Bollobás,Extremal Graph Theory, Academic Press, New York, 1978.

    Google Scholar 

  2. [2]

    B.Bollobás,Combinatorics, Cambridge University Press, 1986.

  3. [3]

    B. Bollobás andP. Erdős, On a Ramsey-Turán type problem,J. Combinatorial Th. B 21 (1976), 166–168.

    Article  Google Scholar 

  4. [4]

    P. Erdős, On extremal problems of graphs and generalized graphs,Israel J. Math. 2 (1964), 183–190.

    Google Scholar 

  5. [5]

    P.Erdős, Extremal problems for graphs and hypergraphs: similarities and differences,to appear.

  6. [6]

    P. Erdős andA. Hajnal, On chromatic number of graphs and set systems,Acta Math. Acad. Sci. Hungar. 17 (1966), 61–99.

    Article  Google Scholar 

  7. [7]

    P. Erdős, A. Hajnal, V. T. Sós andE. Szemerédi, More results on Ramsey-Turán type problems,Combinatorica,3 (1983), 69–81.

    Google Scholar 

  8. [8]

    P. Erdős andV. T. Sós, On Ramsey-Turán type Theorems for Hypergraphs,Combinatorica 2 (1982), 289–295.

    Google Scholar 

  9. [9]

    P. Erdős, M. Simonovits, Compactness results in extremal graph theory,Combinatorica 2 (1982), 275–288.

    Google Scholar 

  10. [10]

    P. Erdős, M. Simonovits, Supersaturated graphs and hypergraphs,Combinatorica 3 (1983), 181–192.

    Google Scholar 

  11. [11]

    P.Frank and Z.Füredi, Exact solution of some Turán-type problems,J. Combinatorial Th. A, submitted.

  12. [12]

    P. Frankl andZ. Füredi, A new generalization of the Erdős—Ko-Rado theorem,Combinatorica,3 (1983), 341–349.

    Google Scholar 

  13. [13]

    P. Frankl andZ. Füredi, An exact result for 3-graphs,Discrete Math. 50 (1984), 323–328.

    Article  Google Scholar 

  14. [14]

    P. Frankl, V. Rödl, Hypergraphs do not jump,Combinatorica,4 (1984), 149–159.

    Google Scholar 

  15. [15]

    Z.Füredi,Personal communication, 1983.

  16. [16]

    G. Katona, T. Nemetz andM. Simonovits, On a graph problem of Turán, (in Hungarian)Mat. Lapok 15 (1964), 228–238.

    Google Scholar 

  17. [17]

    V.Rödl, On universality of graphs with uniformly distributed edges,Discrete Math. (1986).

Download references

Author information



Additional information

This paper was written while the authors were visiting AT&T Bell Laboratories, Murray Hill, NJ 07974.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frankl, P., Rödl, V. Some Ramsey-Turán type results for hypergraphs. Combinatorica 8, 323–332 (1988).

Download citation

AMS subject classification code (1980)

  • 05 C 55
  • 05 C 65