Journal of Statistical Physics

, Volume 76, Issue 3–4, pp 985–1003 | Cite as

Localization of electromagnetic and acoustic waves in random media. Lattice models

  • Alexander Figotin
  • Abel Klein


We consider lattice versions of Maxwell's equations and of the equation that governs the propagation of acoustic waves in a random medium. The vector nature of electromagnetic waves is fully taken into account. The medium is assumed to be a small perturbation of a periodic one. We prove rigorously that localized eigenstates arise in a vicinity of the edges of the gaps in the spectrum. A key ingredient is a new Wegner-type estimate for a class of lattice operators with off-diagonal disorder.

Key Words

Localization random media electromagnetic waves acoustic waves lattice model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Anderson, Absence of diffusion in certain random lattices,Phys. Rev. 109:1492 (1958).Google Scholar
  2. 2.
    P. W. Anderson, The question of classical localization. A theory of white paint?Phil. Mag. B 52(3):505–509 (1985).Google Scholar
  3. 3.
    Sajeev John, Localization and absorption of waves in a weakly dissipative disordered medium,Phys. Rev. Lett. 31:304 (1985).Google Scholar
  4. 4.
    Sajeev John, Localization of light,Phys. Today 1991 (May): 32–40.Google Scholar
  5. 5.
    Development and applications of materials exhibiting photonic band gaps,J. Opt. Soc. Am. B,10(2):280–413 (1993).Google Scholar
  6. 6.
    Sajeev John, Strong localization of photons in certain disordered dielectric superlattices,Phys. Rev. Lett. 58:2486 (1987).Google Scholar
  7. 7.
    C. A. Condat and T. K. Kirpatrik, Resonant scattering and Anderson localization of acoustic waves,Phys. Rev. B 36(13):6782–6793 (1987).Google Scholar
  8. 8.
    E. Yablonovitch, Photonic band-gap structures,J. Opt. Soc. Am. B 10(2):283 (1983).Google Scholar
  9. 9.
    E. N. Economou and M. Sigalas, Spectral gaps for classical waves in periodic structures, inPhotonic Band Gaps and Localization, C. M. Soukoulis, ed. (Plenum Press, New York, 1993), pp. 317–338.Google Scholar
  10. 10.
    A. Figotin, Existence of gaps in the spectrum of periodic structures on a lattice,J. Stat. Phys. 73(3/4):571–585 (1993).Google Scholar
  11. 11.
    A. Figotin and A. Klein, Localization phenomenon in gaps of the spectrum of random lattice operators,J. Stat. Phys. 75(5/6):997–1021 (1994).Google Scholar
  12. 12.
    H. Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model,Commun. Math. Phys. 124:285–299 (1989).Google Scholar
  13. 13.
    T. Spencer, Localization for random and quasiperiodic potentials,J. Stat. Phys. 51 (5/6): 1009–1019 (1988).Google Scholar
  14. 14.
    W. G. Faris,Localization Estimates for Off-Diagonal Disorder (American Mathematical Society, Providence, Rhode Island, 1991).Google Scholar
  15. 15.
    M. Aizenman and S. Molchanov, Localization at large disorder and at extreme energies: An elementary derivation,Commun. Math. Phys. 157:245–278 (1993).Google Scholar
  16. 16.
    L. Pastur and A. Figotin,Spectra of Random and Almost-Periodic Operators (Springer-Verlag, Berlin, 1992).Google Scholar
  17. 17.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics: Functional Analysis, Vol. I (Academic Press, New York, 1972).Google Scholar
  18. 18.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics: Analysis of Operators, Vol. IV (Academic Press, New York, 1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Alexander Figotin
    • 1
  • Abel Klein
    • 2
  1. 1.Department of MathematicsUniversity of North Carolina-CharlotteCharlotte
  2. 2.Department of MathematicsUniversity of California-IrvineIrvine

Personalised recommendations