Journal of Statistical Physics

, Volume 74, Issue 5–6, pp 1255–1264 | Cite as

The equilibrium shape of a two-dimensional crystal between parallel planes

  • J. De Coninck
  • J. Fruttero
  • A. Ziermann
Short Communications

Abstract

By applying rather standard techniques for equilibrium crystal shapes (Wulff construction), we derive a construction for the equilibrium shape of a 2D crystal grown between two parallel plane substrates. The critical distance of the substrates at which this crystal splits into two parts is computed as a function of the wall free energy of the substrates. This may open new perspectives for the measurement of wall free energies.

Key Words

Wulff shapes Winterbottom and Summertop constructions liquid bridge wall attractions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. P. Zia, J. E. Avron, and J. E. Taylor, The Summertop construction: Crystals in a corner,J. Stat. Phys. 50:727 (1988).Google Scholar
  2. 2.
    A. M. Cazabat and H. Lyklema, private communication.Google Scholar
  3. 3.
    G. Pétré and G. Wozniak, Measurement of the variation of interfacial tension with temperature between immiscible liquids of equal density,Acta Astronaut. 13(11/12):669–672 (1986).Google Scholar
  4. 4.
    G. Pétré and G. Wozniak, Shape of a liquid bridge and interfacial tension,Advan. Space Res. 6(5):133–140 (1986).Google Scholar
  5. 5.
    C. Bisch, Une méthode de mesure de la tension interfaciale de deux liquides de même masse volumique: la méthode du cylindre,C. R. Acad. Sci. Paris 312 (Ser. II): 965–970 (1991).Google Scholar
  6. 6.
    J. De Coninck and F. Dunlop, Partial to complete Wetting: A microscopic derivation of the Young relation,J. Stat. Phys. 47:827 (1987).Google Scholar
  7. 7.
    D. B. Abraham and J. De Coninck, Description of phases in a film thickening transition,J. Phys. A: Math. Gen. 16:L333 (1983).Google Scholar
  8. 8.
    D. B. Abraham and P. Reed, Diagonal interface in the two-dimensional Ising ferromagnet.J. Phys. A 10:L121 (1977).Google Scholar
  9. 9.
    H. van Beijeren and I. Nolden, The roughening transition, inTopics in Current Physics, Vol. 43, W. Schommers and P. von Blanckenhagen, eds. (Springer, Berlin, 1987), pp. 259–300.Google Scholar
  10. 10.
    J. E. Taylor, Some crystalline variational techniques and results,Astérisque 154–155:307–320 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • J. De Coninck
    • 1
  • J. Fruttero
    • 1
    • 2
  • A. Ziermann
    • 1
  1. 1.Université de Mons-HainautMONSBelgium
  2. 2.Centre de Physique ThériqueCNRS LuminyMarseille Cedex 9France

Personalised recommendations