Journal of Statistical Physics

, Volume 74, Issue 5–6, pp 1047–1084 | Cite as

Amplitude expansions for instabilities in populations of globally-coupled oscillators

  • John David Crawford
Articles

Abstract

We analyze the nonlinear dynamics near the incoherent state in a mean-field model of coupled oscillators. The population is described by a Fokker-Planck equation for the distribution of phases, and we apply center-manifold reduction to obtain the amplitude equations for steady-state and Hopf bifurcation from the equilibrium state with a uniform phase distribution. When the population is described by a native frequency distribution that is reflection-symmetric about zero, the problem has circular symmetry. In the limit of zero extrinsic noise, although the critical eigenvalues are embedded in the continuous spectrum, the nonlinear coefficients in the amplitude equation remain finite, in contrast to the singular behavior found in similar instabilities described by the Vlasov-Poisson equation. For a bimodal reflection-symmetric distribution, both types of bifurcation are possible and they coincide at a codimension-two Takens-Bogdanov point. The steady-state bifurcation may be supercritical or subcritical and produces a time-independent synchronized state. The Hopf bifurcation produces both supercritical stable standing waves and supercritical unstable traveling waves. Previous work on the Hopf bifurcation in a bimodal population by Bonilla, Neu, and Spigler and by Okuda and Kuramoto predicted stable traveling waves and stable standing waves, respectively. A comparison to these previous calculations shows that the prediction of stable traveling waves results from a failure to include all unstable modes.

Key Words

Oscillators bifurcation symmetry synchronization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Winfree, Biological rhythms and the behavior of populations of coupled oscillators,J. Theor. Biol. 16:15–42 (1967).Google Scholar
  2. 2.
    Y. Kuramoto,Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, New York, 1984).Google Scholar
  3. 3.
    H. Sakaguchi, Cooperative phenomena in coupled oscillator system under external fields.Prog. Theor. Phys. 79:39–46 (1988).Google Scholar
  4. 4.
    Y. Kuramoto, Cooperative dynamics of oscillator community,Prog. Theor. Phys. Suppl. 79:223–240 (1984).Google Scholar
  5. 5.
    Y. Kuramoto and I. Nishikawa, Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator commutities,J. Stat. Phys. 49:569–605 (1987).Google Scholar
  6. 6.
    H. Daido, Intrinsic fluctuations and a phase transition in a class of large populations of interacting oscillators.J. Stat. Phys. 60:753–800 (1990).Google Scholar
  7. 7.
    S. Strogatz and R. Mirollo, Stability of incoherence in a population of coupled oscillators,J. Stat. Phys. 63:613–635 (1991).Google Scholar
  8. 8.
    S. Strogatz, R. Mirollo, and P. C. Matthews, Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping.Phys. Rev. Lett. 68:2730–2733 (1992).Google Scholar
  9. 9.
    K. Okuda and Y. Kuramoto, Mutual entrainment between populations of coupled oscillators,Prog. Theor. Phys. 86:1159–1176 (1991).Google Scholar
  10. 10.
    H. Daido, Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators,Prog. Theor. Phys. 88:1213–1218 (1992).Google Scholar
  11. 11.
    L. L. Bonilla, J. C. Neu, and R. Spigler, Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators,J. Stat. Phys. 67:313–330 (1992).Google Scholar
  12. 12.
    G. B. Ermentrout, Synchronization in a pool of mutually coupled oscillators with random frequencies,J. Math. Biol. 22:1–9 (1985).Google Scholar
  13. 13.
    J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators,J. Stat. Phys. 72:145–166 (1993).Google Scholar
  14. 14.
    E. Knobloch, Bifurcations in rotating systems, inTheory of Solar and Planetary Dynamos: Introductory Lectures, M.R.E. Proctor and A.D. Gilbert, eds. (Cambridge University Press, Cambridge, 1992).Google Scholar
  15. 15.
    J. D. Crawford and P. D. Hislop, Application of the method of spectral deformation to the Vlasov-Poisson system,Ann. Phys. (N.Y.)189:265–317 (1989).Google Scholar
  16. 16.
    J. D. Crawford, Amplitude equations on unstable manifolds: Singular behavior from neutral modes, inModern Mathematical Methods in Transport Theory, W. Greenberg and J. Polewczak, eds. (Birkhauser, Basel, 1991), pp. 97–108.Google Scholar
  17. 17.
    M. Golubitsky, I. Stewart, and D. G. Schaeffer,Singularities and Groups in Bifurcation Theory, Vol. II (Springer-Verlag, New York, 1988).Google Scholar
  18. 18.
    J. D. Crawford and E. Knobloch, Symmetry and symmetry-breaking bifurcations in fluid dynamics,Annu. Rev. Fluid Mech. 23:341–387 (1991).Google Scholar
  19. 19.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. IV (Academic Press, New York, 1978).Google Scholar
  20. 20.
    J. D. Crawford, Introduction to bifurcation theory,Rev. Mod. Phys. 63:991–1037 (1991).Google Scholar
  21. 21.
    J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, New York, 1986).Google Scholar
  22. 22.
    A. Vanderbauwhede and G. Iooss, Centre manifold theory in infinite dimensions, inDynamics Reported, Vol. 1 (Springer-Verlag, New York, 1992), pp. 125–163.Google Scholar
  23. 23.
    D. Ruelle, Bifurcations in the presence of a symmetry group,Arch. Rat. Mech. Anal. 51:136 (1973).Google Scholar
  24. 24.
    A. K. Bajaj, Bifurcating periodic solutions in rotationally symmetric systems.SIAM J. Appl. Math. 42:1978–1990 (1982).Google Scholar
  25. 25.
    S. A. van Gils and J. Mallet-Paret, Hopf bifurcation and symmetry: Travelling and standing waves on the circle,Proc. R. Soc. Edinburgh 104A:279–307 (1986).Google Scholar
  26. 26.
    W. Nagata, Symmetric Hopf bifurcation and magnetoconvection,Contemp. Math. 56:237–265 (1986).Google Scholar
  27. 27.
    P. Peplowski and H. Haken, Effects of detuning on Hopf bifurcation at double eigenvalues in laser systems.Phys. Lett. A 120:138–140 (1987).Google Scholar
  28. 28.
    G. Dangelmayr and E. Knobloch, The Takens-Bogdanov bifurcation withO(2) symmetry,Phil. Trans. R. Soc. Lond. A 322:243–279 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • John David Crawford
    • 1
  1. 1.Department of Physics and AstronomyUniversity of PittsburghPittsburgh

Personalised recommendations