aequationes mathematicae

, Volume 31, Issue 1, pp 121–141 | Cite as

A graph-theoretical representation of PL-manifolds — A survey on crystallizations

  • M. Ferri
  • C. Gagliardi
  • L. Grasselli
Survey Paper


This is a survey of the techniques and results developed by M. Pezzana and his group, which includes, besides the authors, A. Cavicchioli, P. Bandieri and A Donati.

The original concept is that of “contracted triangulation”, which was introduced with the main goal of finding a “minimal” atlas for topological manifolds ([P1 1968], [P2 1974], [P3 1974], [FG2 1979]). Only later did the possibility of deducing a graph-theoretical tool — the crystallization — for representing P.L. manifolds occur as a major aspect of the theory ([P4 1975], [F1 1976]). This leads to an application of graph theory to P.L. topology, which seems not to have been explored before. Recently, other authors outside Italy have independently become interested in this subject.

For the sake of conciseness, definitions and statements often appear in a form other than that of the quoted references.

AMS (1980) subject classification

Primary O5C15, 57M15 Secondary 57Q05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. [T]
    Threlfall, W.,Gruppenbilder. Abh. Sächs. Akad. Wiss. Leipzig Math.-Natur. Kl.41 N. 6 (1932), 1–59.Google Scholar


  1. [R]
    Reidemeister, K.,Heegaarddiagramme und Invarianten von Mannigfaltigkeiten. Abh. Math. Sem. Univ. Hamburg10 (1933), 109–118.Google Scholar
  2. [S]
    Singer, J.,Three-dimensional manifolds and their Heegaard diagrams. Trans. Amer. Math. Soc.35 (1933), 88–111.Google Scholar


  1. [ST]
    Seifert, H. andThrelfall, W.,Lehrbuch der Topologie. Teubner, Leipzig 1934; English reprint: Academic Press 1980.Google Scholar


  1. [E]
    Edmonds, J.,A combinatorial representation for polyhedral surfaces. Notices Amer. Math. Soc.7 (1960), 646.Google Scholar
  2. [HW]
    Hilton, P. J. andWylie, S.,An introduction to algebraic topology — homology theory. Cambridge University Press, Cambridge 1960.Google Scholar


  1. [Lk]
    Lickorish, W. B. R.,A representation of orientable, combinatorial 3-manifolds. Ann. of Math.76 (1962), 531–540.Google Scholar


  1. [Y]
    Youngs, J. W. T.,Minimal imbeddings and the genus of a graph. J. Math. Mech.12 (1963), 303–316.Google Scholar


  1. [P1]
    Pezzana, M.,Atlanti minimali di varietà differenziabili compatte. Boll. Un. Mat. Ital.6 (1968), 749–752.Google Scholar


  1. [Ha]
    Harary, F.,Graph theory. Addison-Wesley, Reading, 1969.Google Scholar


  1. [Bi]
    Biggs, N.,Pictures, combinatorics. Eds. Welsh and Woodall. Inst. Math. Appl. Southend-on-Sea (1972), 1–17.Google Scholar
  2. [RS]
    Rourke, C. andSanderson, B.,Introduction to piecewise-linear topology. Springer Verlag New York-Heidelberg 1972Google Scholar


  1. [W]
    White, A. T.,Graphs, groups and surfaces. North Holland, Amsterdam-London 1973.Google Scholar


  1. [P2]
    Pezzana, M.,Sulla struttura topologica delle varietà compatte. Atti Sem. Mat. Fis. Univ. Modena23 (1974), 269–277.Google Scholar
  2. [P3]
    Pezzana, M., Compattificazione di Rn e varietà topologiche compatte triangolabili. Atti Sem. Mat. Fis. Univ. Modena23 (1974), 278–285.Google Scholar


  1. [FG1]
    Ferri, M. andGagliardi, C.,Alcune proprietà caratteristiche delle triangolazioni contratte. Atti Sem. Mat. Fis. Univ. Modena24 (1975), 195–220.Google Scholar
  2. [P4]
    Pezzana, M.,Diagrammi di Heegaard e triangolazione contratta. Boll. Un. Mat. Ital.12 Suppl. fasc. 3 (1975), 98–105.Google Scholar
  3. [PFG]
    Pezzana, M., Ferri, M. andGagliardi, C.,Omomorfismo di Mayer-Vietoris per varietà tridimensionali. Boll. Un. Mat. Ital.12 Suppl. fasc. 3 (1975), 148–157.Google Scholar


  1. [F1]
    Ferri, M.,Una rappresentazione delle n-varietà topologiche triangolabili mediante grafi (n + 1)-colorati. Boll. Un. Mat. Ital.13-B (1976), 250–260.Google Scholar
  2. [G1]
    Gagliardi, C.,Spezzamenti alla Heegaard per varietàn-dimensionali. Bill. Un. Mat. Ital.13-A (1976), 302–311.Google Scholar
  3. [He]
    Hempel, J.,3-Manifolds. Princeton Univ. Press, Princeton, NJ 1976.Google Scholar
  4. [Hi]
    Hilden, H. M., Three-fold branched coverings of S3. Amer. J. Math.98 (1976), 989–997.Google Scholar
  5. [J]
    Johnson, D. L.,Presentations of groups. Cambridge Univ. Press, Cambridge 1976.Google Scholar
  6. [M1]
    Montesinos, J. M., Three-manifolds as 3-fold branched coverings of S3. Quart. J. Math. Oxford Ser. (2)27 (1976), 85–94.Google Scholar


  1. [FW]
    Fiorini, S. andWilson, R.,Edge-colorings of graphs. Pitman, London (1977).Google Scholar


  1. [C1]
    Cavicchioli, A.,Pseudo-dissezioni e triangolazioni contratte di spazi con singolarità isolate. Atti Sem. Mat. Fis. Univ. Modena27 (1978), 132–150.Google Scholar
  2. [F2]
    Ferri, M.,A non-Cayleyian diagram for presentations of groups. J. Comb. Inform. System Sci.3 (1978), 245–254.Google Scholar
  3. [K]
    Kirby, R., A calculus for framed links in S3. Invent. Math.45 (1978), 36–56.Google Scholar
  4. [St]
    Stahl, S.,Generalized embedding schemes. J. Graph Theory2 (1978), 41–52.Google Scholar


  1. [BGr]
    Bandieri, P. andGrasselli, L.,Fibrazioni standard di Seifert. Atti Sem. Mat. Fis. Univ. Modena28 (1979), 189–199.Google Scholar
  2. [F3]
    Ferri, M., Crystallisations of 2-fold branched coverings of S3. Proc. Amer. Math. Soc.73 (1979), 271–276.Google Scholar
  3. [FG2]
    Ferri, M. andGagliardi, C.,Strong ball coverings of manifolds. Atti Sem. Mat. Fis. Univ. Modena28 (1979), 289–296.Google Scholar
  4. [FR]
    Fenn, R. andRourke, C.,On Kirby's calculus of links. Topology18 (1979), 1–15.Google Scholar
  5. [G2]
    Gagliardi, C.,A combinatorial characterization of 3-manifold crystallizations. Boll. Un. Mat. Ital.16-A (1979), 441–449.Google Scholar
  6. [G3]
    Gagliardi, C.,How to deduce the fundamental group of a closed n-manifold from a contracted triangulation. J. Combin. Inform. System Sci.4 (1979), 237–252.Google Scholar
  7. [KS]
    Kirby, R. andScharlemann, M. G.,Eight faces of the Poincaré homology 3-sphere. Geometric Topology (J. Cantrell Ed.), Proc. 1977 Georgia Conference, Academic Press New York-London 1979, pp. 113–146.Google Scholar
  8. [M2]
    Montesinos, J. M.,Heegaard diagrams for closed 4-manifolds. Geometric Topology (J. Cantrell Ed.), Proc. 1977 Georgia Conference, Academic Press New York-London 1979, pp. 219–237.Google Scholar
  9. [Sa]
    Cesar de Sá, E.,A link calculus for 4-manifolds. Topology of low-dimensional manifolds, Lecture Notes in Math. Vol. 722, Springer, Berlin 1979, pp. 16–31.Google Scholar


  1. [C2]
    Cavicchioli, A.,Una rappresentazione delle trivarietá orientabili mediante atlanti minimali di superficie. Atti Sem. Mat. Fis. Univ. Modena29 (1980), 294–319.Google Scholar
  2. [CG]
    Cavicchioli, A. andGagliardi, C.,Crystallizations of PL-manifolds with connected boundary. Boll. Un. Mat. Ital.17-B (1980), 902–917.Google Scholar
  3. [CGP]
    Cavicchioli, A., Grasselli, L. andPezzana, M.,Su di una decomposizione normale per le n-varietá chiuse. Boll. Un. Mat. Ital.17-B (1980), 1146–1165.Google Scholar
  4. [Ma]
    Mandelbaum, R.,Four-dimensional topology — an introduction. Bull. Amer. Math. Soc.2 (1980), 1–159.Google Scholar


  1. [C3]
    Cavicchioli, A.,A new handlebody decomposition of 3-manifolds with connected boundary, and their fundamental group. Boll. Un. Mat. Ital.18-B (1981), 131–149.Google Scholar
  2. [C4]
    Cavicchioli, A.,Remarks on Heegaard splitting theory. Boll. Un. Mat. Ital.18-B (1981), 961–975.Google Scholar
  3. [G4]
    Gagliardi, C.,Regular imbeddings of edge-coloured graphs. Geom. Dedicata11 (1981), 397–414.Google Scholar
  4. [G5]
    Gagliardi, C.,Extending the concept of genus to dimension n. Proc. Amer. Math. Soc.81 (1981), 473–481.Google Scholar
  5. [Ti]
    Tits, J.,A local approach to buildings. The geometric vein. Springer, New York-Berlin 1981, pp. 519–547.Google Scholar


  1. [BD]
    Bandieri, P. andDonati, A.,Le 3-varietá orientabili di genere due come quozienti di un toro pieno. Atti Sem. Mat. Fis. Univ. Modena31 (1982), 14–21.Google Scholar
  2. [BGa]
    Bandieri, P. andGagliardi, C.,Generating all orientable n-manifolds from (n - 1)-complexes. Rend. Circ. Mat. Palermo31 (1982), 233–246.Google Scholar
  3. [C5]
    Cavicchioli, A.,A 3-manifold invariant independent of the homotopy type. Boll Un. Mat. Ital.1-D (1982), 215–227.Google Scholar
  4. [DG]
    Donati, A. andGrasselli, L.,Gruppo dei colori e cristallizzazioni ‘normali’ degli spazi lenticolari. Boll. Un. Mat. Ital.1-A (1982), 359–366.Google Scholar
  5. [FG3]
    Ferri, M. andGagliardi, C.,Crystallisation moves. Pacific J. Math.100 (1982), 85–103.Google Scholar
  6. [FG4]
    Ferri, M. andGagliardi, C.,On the genus of 4-dimensional products of manifolds. Geom. Dedicata13 (1982), 331–345.Google Scholar
  7. [FG5]
    Ferri, M. andGagliardi, C., The only genus zero n-manifold is Sn. Proc. Amer. Math. Soc.85 (1982), 638–642.Google Scholar
  8. [G6]
    Gagliardi, C.,Recognizing a 3-dimensional handle among 4-coloured graphs. Ricerche Mat.31 (1982), 389–404.Google Scholar
  9. [Li1]
    Lins, S.,Graph-encoded maps. J. Combin. Theor. Ser. B32 (1982), 171–181.Google Scholar
  10. [V]
    Volzone, G., Alcune osservazioni sul riconoscimento di S1 × S2. Atti Sem. Mat. Fis. Univ. Modena31 (1982), 228–247.Google Scholar


  1. [BDG]
    Bandieri, P., Donati, A. andGrasselli, L.,‘Normal’ crystallizations of 3-manifolds. Geom. Dedicata14 (1983), 405–418.Google Scholar
  2. [DV]
    De Paris, G. andVolzone, G.,Omologia di grafi colorati sugli spigoli. Att. Sem. Mat. Fis. Univ. Modena32 (1983), 216–231.Google Scholar
  3. [D1]
    Donati, A.,A calculation method of 3-manifold fundamental groups. J. Comb. Infom. System Sci.8,2 (1983), 97–100.Google Scholar
  4. [G7]
    Gagliardi, C.,Cobordant crystallizations. Discrete Math.45 (1983), 61–73.Google Scholar
  5. [Vi1]
    Vince, A.,Combinatorial maps. J. Combin. Theor. Ser B34 (1983), 1–21.Google Scholar
  6. [Vi2]
    Vince, A.,Graphic matroids, shellability and the Poincaré conjecture. Geom. Dedicata14 (1983), 303–314.Google Scholar
  7. [Vi3]
    Vince, A.,Regular combinatorial maps. J. Combin. Theor. Ser. B35 (1983), 256–277.Google Scholar


  1. [CGr1]
    Cavicchioli, A. andGrasselli, L.,Gruppi di omografie propriamente discontinui e trivarietà. Boll. Un. Mat. Ital.3-B (1984), 413–434.Google Scholar
  2. [Mh]
    Mohar, B.,Simplicial schemes and some combinatorial applications. Proc. Fourth Yugoslav Seminar on Graph Theory 1983, 209–229.Google Scholar


  1. [BCG]
    Bandieri, P., Cavicchioli, A. andGrasselli, L.,Generating all closed 3-manifolds from handlebodies and polygonal schemes. Proc. Colloquium on Topology, Eger, 1983, Coll. Math. Soc. J. Bolyai,41 (1985), 35–56.Google Scholar
  2. [C6]
    Cavicchioli, A.,Lins-Mandel crystallizations. Discrete Math.57 (1985), 17–37.Google Scholar
  3. [CGr2]
    Cavicchioli, A. andGrasselli, L.,Minimal atlases of manifolds. Cahiers Topologie Géom. Différentielle26 (1985), 389–397.Google Scholar
  4. [Gr1]
    Grasselli, L.,A geometric description of ‘normal’ crystallizations. J. Geom.24 (1985), 36–48.Google Scholar
  5. [Li2]
    Lins, S.,A simple proof of Gagliardi's handle recognition theorem. Discrete Math.57 (1985), 253–260.Google Scholar
  6. [LM]
    Lins, S. andMandel, A.,Graph-encoded 3-manifolds. Discrete Math.57 (1985), 261–284.Google Scholar


  1. [BM]
    Bracho, J. andMontejano, L.,The combinatorics of colored triangulations of manifolds. To appear.Google Scholar
  2. [C7]
    Cavicchioli, A.,Lins-Mandel 3-manifolds and their groups: The conjectured homology spheres and other classes. To appear.Google Scholar
  3. [CV]
    Costa, A. F. andVal-Melús, P.,Crystallizations and permutations representing 3-manifolds. To appear.Google Scholar
  4. [D2]
    Donati, A.,A class of 4-pseudomanifolds similar to the lens spaces. Aequationes Math., to appear.Google Scholar
  5. [D3]
    Donati, A., Lins-Mandel manifolds as branched coverings of S3. Discrete Math., to appear.Google Scholar
  6. [DF]
    Donati, A. andFerri, M.,A note on groups and permutation-partition pairs. To appear.Google Scholar
  7. [F4]
    Ferri, M.,Colour switching and homeomorphism of manifolds. Canadian Math. J., to appear.Google Scholar
  8. [FG6]
    Ferri, M. andGagliardi, C.,A characterization of punctured n-spheres. Yokohama Math. J., to appear.Google Scholar
  9. [FG7]
    Ferri, M. andGagliardi, C.,Multiple residues in dimension three. To appear.Google Scholar
  10. [FL]
    Ferri, M. andLins, S.,Topological aspects of edge fusion in 4-graphs. To appear.Google Scholar
  11. [G8]
    Gagliardi, C.,Regular genus—the boundary case. Geom. Dedicata, to appear.Google Scholar
  12. [G9]
    Gagliardi, C.,On the genus of CP2. To appear.Google Scholar
  13. [GV]
    Gagliardi, C. andVolzone, G., Handles in graphs and sphere bundles over S1. European J. Combin., to appear.Google Scholar
  14. [Gr2]
    Grasselli, L.,Edge-coloured graphs and associated groups. Atti II Convegno di Topologia, Taormina 1984, Ren. Circ. Mat. Palermo, to appear.Google Scholar
  15. [Gr3]
    Grasselli, L.,Multiple-coloured graphs and pseudocomplexes. To appear.Google Scholar
  16. [Gr4]
    Grasselli, L.,3-manifold spines and bijoins. To appear.Google Scholar
  17. [Li3]
    Lins, S.,On the fundamental group of 3-gems and a ‘planar’ class of 3-manifolds. To appear.Google Scholar
  18. [Li4]
    Lins, S.,Paintings: A planar approach to higher dimensions. Geom. Dedicata20 (1986), 1–25.Google Scholar
  19. [Li5]
    Lins, S.,Invariant groups on equivalent crystallizations. To appear.Google Scholar

Copyright information

© Birkhäuser Verlag 1986

Authors and Affiliations

  • M. Ferri
    • 1
    • 2
    • 3
  • C. Gagliardi
    • 1
    • 2
    • 3
  • L. Grasselli
    • 1
    • 2
    • 3
  1. 1.Dipartimento di MatematicaUniversità di BolognaBolognaItaly
  2. 2.Dipartimento di MatematicaUniversità di ModenaModenaItaly
  3. 3.Dipartimento di MatematicaUniversità di FerraraFerraraItaly

Personalised recommendations